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Abstract

The Environmental Kuznets Curve is a hypothesis stating that emissions initially rise as

income per capita increases, then decrease after some level of development has been

achieved. Graphically, the income-emission relationship should follow an inverted U-

shape curve. Empirical estimations have resulted in mixed shapes of the curve and the

income level that defines a turning point. Most studies estimate linear or panel versions of

the model. These assume an homogeneous income-emission relationship across countries.

Although some authors have pointed out that the relationship is heterogeneous across coun-

tries, no further research has been done to examine the sources. Despite non-parametric

models can find evidence of the EKC, they are limited to unveil the interactions of other

variables. We present a regression tree technique to analyze and classify CO2 emissions

for countries with differentiated economic characteristics. Our findings suggest that as

countries develop, the increasingly complex economy configures an income-emission re-

lationship in which per capita income is insufficient to account for different emission levels

in countries with the same income level. Relevant variables are renewable electricity gen-

eration, the share of exports and industrial activity in GDP, population growth, and urban

population.
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1 Introduction

One of the main concerns of environmental economics is to investigate under which conditions

countries can reduce the impact of economic activity on environmental quality. Since there is no

suitable scale to measure good or bad environmental quality, many studies examine variables

that negatively affect the environment. Greenhouse Gas Emissions (GHE) are the primary

pollutants contributing to Climate Change. CO2 is the major release from human activities,

accounting for two-thirds of the total GHE. [69]

Early works analyzing the implications of economic growth on the environment1 point out

the incompatibility of increasing the volume of economic activities with preserving natural

resources and environmental quality. The Environmental Kuznets Curve (EKC) is a hypoth-

esis formulated by Panayotou [54]. based on the empirical analysis carried out by Grossman

and Krueger [32]. The hypothesis states that developing countries with low levels of income

will initially increase their emissions alongside economic growth, and then decrease after some

level of development has been achieved. Graphically, the income-emission relationship would

follow an inverted U-shape curve. The EKC can be better understood by considering three

different stages of development. First, economic growth in countries with low levels of income

will decrease the quality of their environment as higher consumption and industrial activity

augments emissions [63]. The second stage commences when the larger income and better

distribution results in higher welfare. Society is more aware of environmental problems and

demands better environmental quality.[41] When those demands result in either policy regu-

lations [27], or market-driven shifts in the goods produced and the production quality [62],

a turning point might arise. Emissions reach a maximum level and decrease as the economy

grows beyond this level. Either because services become predominant in the sectoral composi-

tion of the economy [22], technological development improves production processes to become

less emission-intensive [9, 19], or more resources from the society are allocated for cleaning

the environment [25].

Since the EKC hypothesis was conceived, empirical estimations have yielded controversial

findings. Different shapes of the income-emission relationship have been found for different

1Such as The limits to Growth [50] or the Brudntland report [10].
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pollutants, geographical areas and periods.2 Even studies finding the inverted U-shape curve

rarely agree on the threshold value of income that represents the turning point [14, 26]. These

differences have resulted in debate about the validity of the hypothesis. Supporters argue that

results are affected by data limitations [2, 13, 16] and econometric methods [38, 71, 72]. A third

research strain has raised the question of whether the turning point can be assumed as homoge-

neous across countries and periods. For instance, De Bruyn [20] estimates total CO2, SO2 and

NOx emissions for the Netherlands, West Germany, the United Kingdom and the United States

as a function of total GDP. By performing a homogeneity tests on the coefficients associated

with the turning point, the hypothesis of homogeneity is rejected. Hence, the income-emission

relationship does not follow the same path for different countries, even if they have similar

development levels. Under a Bayes estimator consistent with long time-series panel data only

for CO2, Musolesi et at. [53] find different relationships across countries according to the level

of development. Less developed countries display an increasing monotonic relationship, while

an N-shaped curve emerges for industrialized countries. Piaggio and Padilla [55] argue that

imposing a homogeneous specification of the functional form and parameters dismisses the un-

derlying differences in the relationships of countries with the environment. In their study, only

18 of 31 countries (OCDE, Brazil, China and India) are found to have a long-run relationship

between CO2 and economic activity, while only 14 of those achieve a within-sample turning

point. Even by grouping countries according to the shape of the EKC curve, the estimated

parameters prove to generate different shapes of the income-emission curve.

Although the previously mentioned studies provide evidence of heterogeneity of the EKC-

related parameters, they do not investigate potential sources. The research question that moti-

vates this thesis is to investigate how different variables apart from income can alter the shape

of the income-emission curve, particularly the EKC. To our knowledge, the only study moving

in that direction is carried by Jobert et al. [35] who make an attempt to classify countries ac-

cording to the shape of the curve. However, their classifications are based only on the value of

the estimated income parameters. Further interactions of other variables and classifications are

discussed without providing statistical evidence.

We start by conducting several tests to the classical linear reduced form. Volleberg, et al. [71]

suggest applying non-parametric techniques to deal with the identification problems and restric-

2For instance, see de Groot [21].
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tions imposed by linear specification. We also estimate non-parametric and semi-parametric

models and compare. Bernard et al. [5] discuss that, although non-parametric approaches are

an improvement over linear methods by providing more robust tipping points, there is still work

to be done on the identification of the curve. We contribute to the EKC literature by applying

a regression tree model, a statistical tool used in data mining and machine learning, to investi-

gate the heterogeneity of the income-emission relationship across countries as an alternative to

identify the income-emission relationship..

The subsequent sections are divided as follows. Section 2 conducts a literature survey where

the most notorious theoretical developments and econometric methods are addressed. Section

3 defines the models to be compared and describes the dataset, complimented by a preliminary

data analysis. Section 4 presents the results of estimating the different specifications of the

model and the outcome of the regression tree technique. Section 5 discusses the results and

concludes.

2 Literature survey

2.1 Theoretical approximations

The EKC hypothesis was developed following empirical analysis unsupported by theory. Con-

sequently, many authors have tried to develop theoretical explanations for the conditions re-

quired for an economy to display an inverted U-shape behavior. Three main approaches have

been formulated. From the consumer perspective, a trade-off between consumption and pollu-

tion is unavoidable. This approach has been the concern of authors such as McConnell [49],

Stokey [65], Andreoni and Levinson [4], Di Vita [24]; more recently, Ma and Shi [46] and

Figueroa and Pastén [29]. Although the consumer behavior is an essential factor influencing

not only consumption patterns but also environmental regulation [27], the estimation of such

parameters in a cross-country study is difficult to achieve because of the idiosyncratic features.

The seminal works of Grossman and Krueger [32] and Panayotou [54] discussed the eco-

nomic forces and interactions that could explain the EKC. First, a scale effect derived from the

expansion of the economic activity that yields more pollution. Second, a composition effect
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could occur due to differences in the sectoral distribution of economic activities and envi-

ronmental regulations. The lowest-income countries will transit from an agriculture-intensive

economy to develop industrial activity. Afterward, the services sector emerges. Third, the

technique effect will change the embodied pollution per unit of production.

According Bousquet and Favard [7] and Mitić et al. [51], the scale effect is dominant in

early stages of development. The second stage of the income-emission relationship starts when

enough development has been achieved and the economy changes its structure3by composi-

tion effect shifting production towards less emission-intensive sectors [22]. On the final stage,

economic growth will foster technological development and encourage the adoption of cleaner

production processes and the implementation of abatement technologies [62].

More thorough theoretical approaches examine the scale effect by applying growth theories

to relate the aggregated production with emissions or pollution. Such models are constructed

based on neoclassical growth models. Macroeconomic formulations of the EKC incorporate

technological parameters to depict its implications, regardless if it is treated as endogenous or

exogenous. Thus these types of studies also tend to consider the technique effect.

A useful tool is the decomposition analysis used to disentangle changes in emissions derived

from changes in structural economic variables such as sectoral contributions to the production

and their energy intensity. Usually the analysis of the composition effect is investigated under

this framework, relying more in empirical examinations, rather than theoretical developments.

2.1.1 Growth and the environment

The most prominent approaches to develop a theoretical framework for the EKC start from

expanding the Neoclassical Growth Model (the Solow model) to either include the environment

as a production factor, pollution as an outcome, or both. The nature of this model allows

emphasizing the role of technological development in the income-emission relationship.

López [43] is the first author to develop a model focused on the elasticity of substitution

between inputs and pollution shaping the EKC. He argued that under the extreme case of a

zero elasticity of substitution, economic growth centered around improved productivity of cap-

3In a similar way as the one described by the original Kuznets curve [39].
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ital and labor would lead to a monotonic increase increase in pollution. The scale effect will

continuously dominate. Thus, the only mechanism to reduce pollution is reducing economic

growth. However, “pollution-saving” technological change can foster ”clean growth”. He

started by specifying a production function y = G[f(K,L), x] where G is the production func-

tion, f(•) stands for an aggregator function of traditional inputs and x is the environmental

factor.4 A social welfare function is defined as µ = µ[R[p; f(•), x], x, p] where R[•] is the

revenue function and p are prices. If pollution is priced at the marginal social cost, the equa-

tion R3 ≡ ∂R/∂x = −∂µ/∂x
∂µ/∂f

= q depicts the optimal internalization of pollution. Under

non-homothetic preferences and separability between environmental and traditional factors of

production with a CES function R = A[γ2f
ρ + γ3x

ρ](1/ρ), by defining a ≡ −(µ11R)/µ1 as

the coefficient of relative risk aversion of social welfare derived from the production function

G[•], the EE relationship depends on dx/df R 0 if 1 − ρ R a(f). As López explains [43, pp.

171-172]:

“Economic growth increases the value of the environment for consumers. If this

increased value is manifested in the market, firms will have to pay an increasing

price for pollution. [. . . ] The coefficient a, on the other hand, shows how the

marginal utility of income declines as income expands. [. . . ] Thus, if a is large

the pollution price that consumers will demand will increase much more as income

increases than if a is small, and vice versa”.

Since a captures the increase in welfare derived from production (considering the environ-

ment as a factor), it is a function of the aggregate production f . As production increases, a(f)

will approach the threshold value of 1− ρ = 1/σ inherited by the CES preferences. When the

increased production generates less welfare than the loss caused by diminishing environmental

quality, the income-emission relationship and the EKC arises, as shown in Figure 1.

Stokey [65] was concerned about the implications of environmental policy on growth. Her

model introduces technological change as both an endogenous and exogenous variable in an

AK model. Policymakers try to maximize social welfare derived from consumption and pollu-

tion by setting technological standards z. The formulation allows for the possibility of sustained

growth of the economy without environmental protection, but this is not an optimal outcome.

4He also considers index variables for technological change. Since they are exogenously determined and for

simplicity of explanation they are omitted.
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Figure 1: The EKC as a relationship of production, substitutability and consumers’ risk aversion.

Source: López [43, p. 172]

The system must converge to a steady state. With endogenous technological change, defining

pollution during the transition phase as x = AKzβ and if the capital stock surpasses a critical

level, pollution can only decline if β λ̇
λ
+ (β − 1) k̇

k
< 0, where β is the elasticity parameter of

pollution w.r.t. technology, and λ is the shadow value of capital. To sustain the rate of return

to capital as capital stock grows, increasing pollution is required. Imposing stricter regulation

in z lowers the rate of the return of capital; accumulation eventually ceases and growth stops.

The exogenous technical change is not only set by the social planner but also improves at a

constant rate, surpassing the growth rate of capital. Hence, growth is possible even with strict

environmental regulation.

The previous models’ conclusions regarding the EKC heavily relied on explaining the prop-

erties of the utility function for both producers and the social planer. This analysis required

strong assumptions not only on the specification of equations but also on the behavior of the

parameters. Thus, the capacity to analyze the interactions of the scale, composition and tech-
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nique effects is limited [44] and the results of empirical examinations could be inaccurate. This

issue is addressed by Brock and Taylor [9], who adapt the Solow model to incorporate tech-

nological progress in abatement and abatement costs. Although Stokey [65] and Dinda [25]

included technological progress as part of their models, it was tied to the availability of capital,

whereas Brock and Taylor [9] assume that technology is developed with the specific purpose to

reduce pollution.

The Green Solow model is elaborated to illustrate a single sector economy. The pollution

equation is specified as E = ΩF − ΩA(F, FA) = ΩFa(θ), where F is the scale of economic

activity, FA is the abatement efforts, A is the abatement level, Ω is the share of pollution abated

from the total created, and a ≡ [1 − a(1, FA/F )], θ = FA/F ,. The intensive measures of

output, capital and pollution are y = f(k)[1 − θ], k̇ = sf(k)[1 − θ] − [δ + n + gB]k and

e = f(k)a(Ω). By proceeding as in the regular Solow model, the balanced growth path is

given by gE = gB + n− gA, where gB + n represents the scale effect of the rate of production

raising effective labor gB and population growth n. gA captures the technique effect.5 Figure

2 graphs the rates of change of capital and emissions by α times. As capital increases, the

accumulation process causes economic growth accompanied by an increase in pollution. As

the economy approaches the steady state in T ,the increase in pollution is slowed down. Con-

tinuous economic growth is only possible through technological development. Improvements

in abatement technology will accompany.

Since the Green Solow model assumes that abatement technology is exogenous, it does not

provide information about how producers and policymakers respond to environmental degra-

dation. That is precisely the aim of Smulders et al. [62], who further explore the incentives

of heterogeneous producers to adopt specific technologies that have two implications. They

can either improve the quality of goods produced or be pollution-saving. In any case, they

require investment in research and development. Thus, firms choose the technology best suited

to maximize profits.

As seen in Figure 3, Smulders et al. [62] further divide the phases of economic develop-

ment into four sections according to not only the shape of the EKC but also on the associated

production-pollution characteristics of the technology. In the first phase, a single technology

5The Green Solow model is elaborated to illustrate a single sector economy. Hence, the composition effect

cannot be evaluated. The authors recognize that it can be further extended to illustrate a more diversified economy.
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Figure 2: The EKC relationship of total emissions by pollutant and year generated by growth rates.

Source: Brock and Taylor [9, p. 137]

is used and generates no pollution. In the second phase, new technology is available and it

is labor augmenting. Immediately, the increased competition among producers incentivizes

the development of product improvements. Pollution rises along with the scale effect. On the

alarm phase, environmental degradation is evident and the governments develop environmental

policy, leading to the cleaning-up phase, where environmental technology is adopted. Since

technological affects the market performance of producers, the less efficient ones will eventu-

ally leave the market.6 Thus active policy might generate market incentives for the adoption of

cleaner technologies and achieve the cleaning of the environment. Empirical studies, such as

Popp [56] and Aghion [1] support this argument.

6This argument is further explored by Cherniwchan et al. [15] who found that in open economies, less efficient

and dirty exporters might even exit the market due to cost constraints.

8



Figure 3: The four phases of technological development and the EKC. Source: Smulders et al. [62, p.

86]

2.1.2 Decomposition analysis

The previously exposed theoretical approaches consider only the general specification of a sin-

gle sector economy. To further examine the implications of the sectoral composition of the

economy, the decomposition analysis of emissions can be done by defining an identity equa-

tion. Grossman [31] proposed to use Et =
∑

i aitsitYt, where Yit is the scale of economic

activity at time t, sit is the sector i share of output and ait is the pollution generated by a

unit of output in the corresponding sector. Since sit = Yit/Yt and ait = Eit/Yit, it is clear

that Et =
∑

i Eit. By differentiating with respect to time and dividing by Et the equation

Ê = Ŷ +
∑

i eiŝi +
∑

i eiâi. Where x̂ = (dx/dt)/xt and ei is the sectoral share of emissions.7

The final equation allows to examine the scale (Ŷ ), composition (ŝ), and technique (â) effects.

A second specification of the identity equation is the Kaya identity8 [36]

Et =
Et

FECt

FECt

TECt

TECt

GDPt

GDPt

Pt
Pt where FECt is fossil energy consumption, TECt is total energy

consumption and Pt is population. Papers who use this methodology usually find that the tech-

nique offsets the scale [64]. This means either a low emission intensity of the main economic

sectors of a country or that some components of the Et

FECt

FECt

TECt

TECt

GDPt
part of the identity dwindle

7This approach has also been used by Ekins [26], de Bruyn [20], Bruvoll and Medin [11], and Tsurumi and

Managi [68].
8More commonly used in studies focusing on energy production. Luzzati, Orsini and Gucciardi [45] combine

the Kaya analysis with the empirical estimation of the EKC.
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while GDPt and population increase or are held constant.

De Groot [22] develops a link between growth theory and the decomposition analysis through

developing a multi-sector general equilibrium model to analyze the implication of different

technologies and income elasticities for the demand for goods produced by each sector. To in-

troduce the demand for different goods, the utility function is specified as U = [
∑S

i=1 ai(Ci −

C̄i)
ρ]1/ρ, where i ∈ S denotes each sector, ai is the distribution parameter, Ci is consump-

tion and C̄i is a subsistence requirement of consumption. The budget constraint is given by

CiPi ≤ Yi. Production is defined as Qi = [bLi(hLiLi)
σ + bEi(hEiEi)

σ]1−σ where bLi and

bEi are share parameters of labor L and emissions E respectively, and are affected by labor-

augmenting technological progress in the form of productivity denoted by hLi and hEi. Profit

maximization allows to specify emissions as a Marshallian demand for productive inputs. Thus,

under market equilibrium, emissions can be expressed as a function of labor and its relative

prices, consumption and its shares, as well as productivity parameters.

Figure 4: Example of the structural composition and the emergence of the EKC. Source: De Groot [22,

pp. 23-24]

The decomposition analysis used by De Groot [22] formulates the identity

E = C
∑S

i=1
Ei

Li

Li

Ci

Ci

C
resulting in the growth rate of emissions as Ê = Ĉ +

∑
eip̂i

∑
eili +

∑
eiŝi, where pi is the emission labor ration and li is the inverse of the productivity of labor.

Similar to Grossman [31], this formulation can be divided into three components. Albeit the
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technique effect can be approximated through labor productivity. This method can yield differ-

ent results that can result (or not) in an EKC according to the allocation of labor in the three

economic sectors. Figure 4 illustrates one of these cases.

2.1.3 Critiques

The EKC hypothesis is the subject of several critiques. Most studies rarely take into account

that the income-emission relationship might be a dynamic process on which pollution affects

economic performance [64]. Irreversibility on the damages caused to the environment affects

its capacity to absorb pollutants. Thus, even if the flow of emissions declines, the environment

is not necessarily improved [41].

The fact that the inverted U-shape curve has been found for some pollutants but not for others

might be due to evolving production processes that, over time, shift pollution from one pollutant

to another. For instance, the decline in diesel in favor of gasoline engines shifts emissions from

CO to CO2. This might be attributed to technology changes or unpairementd regulation that

focuses on one type of pollutant, which might cause aggregate emission levels to rise [64].

An explanation for the N-shaped curve is that as the economy internalizes the costs of pol-

lution, it effectively decreases. However, when the internalization process is complete, the

scale effect resurges and pollution rises once more. [41] The costs to society merely become

monetary transfers.

The Pollution Heaven Hypothesis itself constitutes a critique to the EKC since it argues that

environmental regulations in one country will motivate the migration of dirty industries to less-

developed countries [17]. The Race to the Bottom Hypothesis is an extension in which less-

developed countries compete to reduce the stringency of environmental regulations in order to

attract investors.9

One of the critiques that have not received enough attention in the literature is the analogy

between the original Kuznets Curve (KC) to the EKC. The original Kuznets work focused on

income distribution. Although including the Gini coefficient or other inequality measures could

contribute to the EKC examination [7], cross-country studies rarely have access to consistent

9Both are confronted by Rasli et al. [58].
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data. Even our dataset extracted from the World Development Indicators does not provide

enough data points to include this consideration.10

2.2 Econometric methods

The seminal papers by Grossman and Krueger [31] and Panayotou [54] set the traditional poly-

nomial equation that many posterior studies will replicate. The assumed functional form of the

income-emission relationship is Eit = β0 + β1Yit + β2Y
2
it + β3Y

3
it + γZ + vi + εt, where E

are emission variables, Y can be economic activity or income measures such as GDP or gross

added value, Z is a vector of control variables and vi are geographical fixed effects. In order

to control for different economy sizes, emission and income variables are usually expressed in

per capita units. When β1 6= 0 and β2 = β3 = 0, a monotonical relationship is found. The peak

of the curve or the turning point is computed by partially differentiating E with respect to Yit

and seeking the maximum. That is Y ∗
it = −β1/2β2 and β3 = 0.

The linear specification entails some basic pitfalls. As List and Gallet [42] argue, the panel

approaches usually assume that the EKC shape is the same for different countries, while the

true values can be conditional on the time and geographical areas of study, as shown by [5, 35,

55]. If there is no heterogeneity in the level of development of the countries within the sam-

ple, omitting lower-income countries will result in models sensitive to sample characteristics.

Estimations will be biased and inconsistent [38, 41] and lack external validity [64]. Further-

more, the quadratic specification implicitly assumes that the shape of the EKC is completely

symmetrical [38].

Many authors have noted that the controversy on the EKC estimation can be attributed to

weak or restrictive econometric analysis [41]. For instance, Grossman and Krueger [32] found

the inverted N and U-shape curves emerging between income per capita and emissions of SO2

and smoke, depending on the inclusion of fixed effects or not. Suspended particles were found

to decline as income increases in both specifications. Nevertheless, they estimated turning

points ranging from $2,000 to $5,000 1985 per capita USD. Panayotou’s [54] estimates for

10Ridzuan [60] utilizes the Standardized World Income Inequality Database which is a collection of inequality

data from different sources such as national databases, published articles, and imputation methods. As the author

notes, the dataset has been criticized for its reduced reliability. For this reason, this thesis does not include this

variable.
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SO2, NOx, CO2, suspended particles and deforestation on a larger sample of countries without

country fixed effects found lower turning points in the range of $800 to $5,500 per capita 1987

USD. Many subsequent works also find different results [14, 21, 38, 51, 57, 63].

One common issue across early empirical analyses of the EKC is that they either do not

include additional control variables and do not report cointegration statistics to test the pres-

ence of omitted variable bias [64]. The omitted variable bias is probably one of the reasons

why results are different across studies. The most common way around is to include higher-

order polynomials of income. Although imperfect multicollinearity is not a severe problem for

econometric estimations, the standard errors will be larger and increase the chances to commit

a Type II error [20, 41]. Because of the multicollinearity caused by the high order polynomi-

als, if control variables are included, they will have little variance left to explain the model.

Reduced-form estimations will operate under correlation, not because of causality [38].

Other potential issues are heteroskedasticity, simultaneity and cointegration issues [64]. Coun-

tries with high GDP and population will usually display a smaller residual term, causing het-

eroscedasticity. The simultaneity arises both from the logic of the hypothesis and one of its

critiques, as pollution might cause a feedback effect on production. Cointegration problems are

pointed out by Vollebergh, et al. [71] who argue that one explanation of the lack of robustness

on the estimates comes from the fact that both pollution and income trends are time-dependent

variables and many attempts to isolate the effect through imposing restrictions on the func-

tional form will throw results highly dependent on the chosen functional form. Time effects are

assumed to affect equally all countries and, thus, the relationship is assumed to be equal.

Panel approaches improve upon the pooled estimations as they allow for incorporating coin-

tegration and unit root considerations [23, 53, 55, 59, 74] in the modelling process. In combi-

nation with improvements in the availability and quality of the data, recently published papers

achieve more accurate estimations of the EKC [57]. However, the panel estimations of the

EKC still face many issues, such as different integration orders, cross-sectional dependence,

endogeneity and parameter heterogeneity [72, 57].

Earlier limitations of data noted by Carson [13] are no longer a concern. International or-

ganizations such as the World Bank, The OCDE and the European Union have improved upon

limitations on the availability and comparability of data across countries and periods. At the
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same time, they offer significant information about data quality for researchers to make deci-

sions about the sampling.

The problems present in the linear estimation of the EKC can be faced by testing the pres-

ence of non-linear relationships, or by combining parametric and non-parametric estimations

[57]. Volleberg, et al. [71] demonstrate that linear EKC estimations can result in differentiated

outcomes according to the assumed functional form of the independent variables and income,

leading to non-robust estimations. By applying a Bayesian estimator combined with a pairwise

estimation improves the robustness of results11 to avoid imposing restrictions on the functional

form, the equation to estimate is Ert = f(Yrt, r) + λ(r, t) + εrt, where f(Yrt, r) is the non-

parametric function of income for the geographical area r, and λ(r, t) isolates the time effects

from the true income-emission relationship. Under a similar formulation, Bernard et al. [5] find

that time and cross-sectional inconsistencies can generate differences in the shape of the curve.

In their study, even non-parametric techniques are also limited for generating an homogeneous

EKC across different subsamples. Andreé, et al. [3] reaches this conclusion and argues that

local economic conditions can be relevant to determine environmental results.

The heterogeneity of the parameters can be dealt with by estimating a random-coefficient

model as carried out by Jobert [35]. Because many countries lack consistent emission data

for more extended periods, such approximation might not be possible for studies focusing on

many countries due to limitations on the rank condition necessary to achieve identification.

This condition creates a double-edged sword for the estimation of the EKC. In order to esti-

mate heterogeneous parameters, the time T should be significantly larger than the number of

countries N included in the sample. As noted by Zoundi [74], traditional panel methods ap-

plied to such data can generate spurious results as their closeness to time series will indicate

cointegration rather than causality. In the opposite case (large N and small T ), researchers

must assume parameter homogeneity.

11A similar approach taken by Jobert, et al. [35] was to group countries according to the shape of their individual

curves.
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3 Empirical strategy

We propose a four-step procedure to answer the research question of this paper. First, we con-

duct several tests to the linear specification of the EKC to analyze whether it is an appropriate

approach or not. The linear tests follow Chapter 6 of de Bruyn [20] complemented by contri-

butions by other authors. Second, we develop a semi-parametric model similar to Vollebergh

et al. [71] and Bernard et al. [5]. We omit the pairwise approach and include linear effects

on variables different than income to formulate a semi-parametric specification. On the third

step, we conduct the Hsiao [33] test to analyze the heterogeneity of the income-emission rela-

tionship in our sample.12 Because the heterogeneity hypothesis cannot be rejected, we apply a

regression tree13 method to examine the differentiated influence on emissions of the variables

considered in our models.

3.1 Data description

The dataset was extracted from the World Bank Development Indicators, which contains data

for 217 countries. After filtering the dataset following criteria similar to Mankiw, Romer and

Weil [47], the final sample includes information for 91 countries for the period 1990-2014.14

The dependent variable is CO2 emissions (metric tons per capita). The explanatory income

variable is GDP per capita, PPP (constant 2017 international USD). Power Purchasing Parity

units of GDP were selected to keep consistency across observations and avoid measurement

errors caused by transforming currencies. To address the relationships considered by the de-

composition analysis, the added value of the three-sector model is measured as a percentage

of GDP. Those are agriculture, forestry, and fishing (Sector 1); industry, including construction

(Sector 2); and services, including public sector activities (Sector 3). We attempted to proxy

the technique effect by including the variables of secondary and tertiary educational attainment

12The procedure of the test is offered in Appendix A.2.
13AppendixA.4 summarizes the technique. For further explanation Breiman et al. [8] or James et al. [34] are

suggested readings.
14The criteria to filter the sample can be consulted in Appendix A.1.
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as bot the the percentages of total population over 25 years old and working population. Re-

sults were often not significant or robust enough to be included in the final model. Additional

controls are exports of goods and services as a percentage of GDP (to illustrate the Pollution

Heaven and Race to the Bottom hypotheses), the percentage of the urban population, population

annual growth rate, and the renewable electricity output as a share of total electricity output.

The resulting panel, although not perfectly balanced, contains full information for the CO2

emissions and GDP per capita for all countries during the period 1995-2014. 72 countries

have observations from 1990, and 10 from 1992. The remaining countries’ observations start

at different years in the interval 1991-1996. Because the 72 countries for which we have full

information represent 79.12% of the observations, there are no discontinuous jumps in the data,

and to avoid complications not required by the non-parametric or the regression tree methods,

the panel data will be treated as balanced.

3.2 Summary statistics and stylized facts

Figure 5 presents the income-emission relationship for the full sample of 91 countries in the

1990-2014 period. Despite the different sources, the scatter resembles the one presented by

Jobert, et al. [35]. As expected, emissions per capita generated by low-income countries are

lower than those of the rest of the world. Unfortunately, this country group is the lesser rep-

resented in the dataset due to the sample removal criteria. Most of the low-income countries

lacked an acceptable data quality score, according to the World Bank’s Statistical Capacity

Indicator.

It is important to note that the heterogeneity of the income-emission relationship increases

alongside income. A divergent speed in the increase of emissions with respect to income can

be observed. An upper (faster increase of emissions) and lower (less emission-intensive in-

crease of income) bounded tendencies can be observed. For the lower bound an apparent EKC

is emerging. These patterns suggest that some countries are linking their economic growth to

the environment. In other words, those countries either rely on natural resources or pollution-

intensive activities to sustain economic growth. Other countries’ growth is sustained by differ-

ent mechanisms.15

15The linking-delinking hypothesis is similar to the EKC. This approach, however, is less theoretically devel-
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Figure 5: Scatter plot of CO2 emissions per capita in metric tons and GDP in 1997 constant international

USD. Full sample.

Figure 6: Evolution of total CO2 emissions across time per income group.

More developed countries in the upper bound of the scatter plot, with CO2 emissions above

15 metric tons per capita are Australia, Canada and the United States for almost all the periods.

Although not entirely oil producers, they are known for their exhaustive energy use and ex-

traction of natural resources. The High income developed countries with CO2 emissions lower

than 5 metric tons per capita for most periods are Panama, Uruguay, Chile, Latvia and Lithua-

nia. Croatia and Portugal, whose emissions were less than 6.5 metric tons per capita. Figure

6 illustrates how these “newly” high-income countries might be driving down total emissions

for their income group in recent years. Middle income countries have increased emissions,

oped. See, for instance, de Bruyn [20], Cumming and von Cramon-Taubadel [18] and Marin and Mazzanti [48].
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arguably because of industrialization processes.

(a) Agriculture, forestry, and fishing (b) Industry (including construction)

(c) Services

Figure 7: Sectoral share of the value added in the GDP per income group, 2014.

Figure 7 shows how the share of industrial activity is relatively larger on Upper-middle in-

come countries, drawing a hum shaped curve. The agriculture and the services sectors are con-

figured similarly to the expectations by Kuznets [39] and de Groot [22]. These facts illustrate

how industrial, developed and developing economies might have linked their economic growth

to take advantage of the environment, while service-oriented economies might have delinked

their growth. The standard empirical estimation of the EKC might undermine the different

types of processes that explain these interactions and divergence across economic sectors.

Table 1 presents the summary statistics divided by income group. Besides the increase in

emissions as income increases, exports also represent a progressively larger share of the GDP

for high-income countries. Population is more concentrated in urban areas for these countries

too. However, population growth rates decline with income. These facts are widely spread in

economics but necessary to keep in mind for further analysis.
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Table 1: Summary statistics by income level.

Low income Mean S.D. Min. Max.

CO2 per capita 0.088 0.035 0.036 0.321

GDP per capita 1,235.345 469.973 436.719 2,536.6

Share of S1 32.299 6.705 18.478 53.283

Share of S2 17.977 3.396 10.415 28.372

Share of S3 42.822 5.942 22.328 62.117

Exports 18.041 6.668 5.585 35.66

Population growth 2.98 0.767 0.251 8.118

Urban population 21.704 6.923 11.076 39.196

Lower-middle income

CO2 per capita 1.281 1.653 0.05 13.447

GDP per capita 4,422.258 2,038.589 1,109.236 10,980.33

Share of S1 20.508 9.03 5.488 51.853

Share of S2 26.251 5.704 12.646 52.152

Share of S3 46.118 7.391 22.956 61.064

Exports 32.574 14.558 5.908 86.405

Population growth 1.858 0.848 -1.007 3.541

Urban population 42.944 14.491 15.437 68.968

Upper-middle income

CO2 per capita 3.866 3.181 0.223 15.94

GDP per capita 11,469.56 5,059.502 1,411.806 26,603.01

Share of S1 10.503 6.32 2.098 52.346

Share of S2 30.802 6.929 15.347 48.53

Share of S3 51.509 7.199 22.922 68.162

Exports 33.229 19.719 6.598 121.311

Population growth 0.983 1.36 -9.081 7.786

Urban population 59.958 16.805 18.196 91.377

High income

CO2 per capita 8.237 3.874 1.09 20.179

GDP per capita 34,313.5 13,041.51 9,492.153 66,038.73

Share of S1 3.007 2.046 0.554 10.997

Share of S2 26.078 4.862 13.682 41.107

Share of S3 61.372 6.077 46.609 76.444

Exports 39.863 19.25 8.972 110.025

Population growth 0.517 .774 -3.848 6.017

Urban population 74.58 11.808 47.915 97.833

Note: Full sample, all years.
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3.3 Specification of the models

The first specification to be tested is a pooled OLS estimation of the EKC:

Eit = β0 + β1Yit + β2Y
2
it + β3Y

3
it + γZ + εit (1)

E stands for CO2 emissions, Y for GDP per capita and Z the vector of control variables.

The panel estimation modifies (1) to include country vi and time-specific τt fixed effects:

Eit = β0 + β1Yit + β2Y
2
it + β3Y

3
it + γZ + vi + τt + εit (2)

The semi-parametric approach follows a basic specification:

Eit = f(Yit) + λ(τt) + γZ + εit (3)

Where f(Yit) and λ(τt) are unknown functions of income and time; Z are the control variables

with an assumed linear effect on emissions.

For the final step of applying a regression tree technique, no functional form can be defined

a priory nor can be inferred by the data structure.

For ease of presentation, we will refer to equation (1) as Levels, equation (2) as Panel and (3)

as Semi-parametric. To compare the results of the tests, these will be adjusted across sections

to either include or exclude control variables and different income polynomials. In order to

select the best transformation of variables, several versions of CO2 and income will be tested

on equation (1). These includes levels (as reported in the dataset), logarithmic transformation

and a first difference approaches.
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4 Estimation results

4.1 Analysis of the linear specification

We start by testing the implications of using different transformations of CO2 emissions and

GDP for equation (1). The different transformations are levels, first differences, logarithmic and

the first difference of the logarithm. The first difference polynomials for levels and logarithms

are computed as x̂q
t = (xt − xt−1)

q. All the specifications were estimated by using robust

standard errors unless a specific test required the contrary.

As Table 8 in Appendix A.3 shows, including high order polynomials induces collinearity

in the linear estimation of the EKC. Only perfect multicollinearity is a concern for modern

econometrics. However, we note that including higher-order polynomials causes great increase

in the VIF indicator. Thus, we are conservative in deciding to restrict the linear specification of

equations (1) and (2) as a third-degree polynomial in GDP.

Second, we test the presence of autocorrelation in order to avoid spurious inference. Only

the levels and logarithmic specifications were tested because the first difference approach al-

ready corrects this problem to some extent. We use the Wooldridge test for autocorrelation in

panel data under the H0 of no serial autocorrelation.16 We find that both specifications suffer

from panel autocorrelation, being more pronounced in the logarithmic model with a higher

F-statistic.

Third, by using equation (2), we perform a cointegration analysis to determine whether the

actual effect can be attributed to cross-sectional cointegration or time. Authors who apply a

panel cointegration approach seek to find if a long-run income-emission relationship can arise

[28, 40, 53, 61, 74, see ]. To have a first glimpse of the homogeneity of the parameters is valid,

it is necessary to examine if the cointegration is country-specific or can be observed across

cross-sectional units. We apply the Westerlund test applicable for unbalanced panels, including

(or not) time trends. The results are presented in Annex A.3, 10. We find that when time trends

are not considered, the null hypothesis of no cointegration is rejected. However, by including

time trends, the null hypothesis cannot be rejected. According to Hsiao [33], first differencing

16Results presented in Appendix A.3, Table 9.
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the variables in a model leads to removal of the long-run relationships. Thus, autocorrelation is

difficult to correct within our panel. We interpret these results as an indicator that there might

be a long-run process governing the income-emission. However, it can be different for different

types of countries.

Table 2: Panel estimation results.

Variables Levels Logarithmic Differences Logarithmic differences

GDP 0.000496*** -2.713* 0.000257*** 0.796***

(3.61e-05) (1.433) (2.94e-05) (0.0916)

GDP2 -9.81e-09*** 0.493*** -6.80e-09 0.724***

(1.08e-09) (0.161) (8.76e-09) (0.259)

GDP3 7.09e-14*** -0.0225*** -1.17e-11*** -2.126***

(1.25e-14) (0.00600) (2.77e-12) (0.453)

Share of S1 0.0207*** -0.00102 -0.0126*** -0.000274

(0.00747) (0.00246) (0.00440) (0.00160)

Share of S2 0.0559*** 0.00742*** -0.00621 0.000531

(0.00851) (0.00172) (0.00465) (0.00130)

Share of S3 -0.00398 -0.00617*** -0.00564 -0.000301

(0.00800) (0.00162) (0.00346) (0.00123)

Exports -0.0137*** 0.000408 0.000424 0.000530

(0.00331) (0.000537) (0.00143) (0.000330)

Urban population 0.0824*** 0.0162*** 0.000719 -0.00167*

(0.00750) (0.00172) (0.00425) (0.000938)

Population growth 0.121*** 0.0108 0.0215 -0.000245

(0.0389) (0.0114) (0.0227) (0.00396)

Renewable electricity -0.0179*** -0.00654*** -0.00245** -0.00115***

(0.00194) (0.000636) (0.000954) (0.000280)

Constant -4.862*** 1.115 1.023*** 0.217*

(0.771) (4.214) (0.382) (0.119)

Country FE YES YES YES YES

Year FE YES YES YES YES

Observations 2,101 2,101 2,032 2,032

R-squared 0.981 0.993 0.186 0.184

Notes: Linear: GDP = x; Logarithmic: GDP = lnx; Differences: GDP = xt − xt−1;

Logarithmic differences: GDP = lnxt − lnxt−1

Robust standard errors in parentheses.

p<0.01, ** p<0.05, * p<0.1
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After testing the properties of the linear regressions, we conducted a panel estimation with

country and year Fixed Effects for the different transformations of emissions and GDP. By es-

timating the model in differences, the long-run relationship indeed vanishes and the resulting

R2 reflects this situation. Although, both the Levels and Logarithmic estimators seem to fit the

data, we decide to keep the estimation in levels as the preferred specification. The autocorrela-

tion found on the Logarithmic was too high to be ignored, while it also suffered from a higher

degree of collinearity.

Figure 8: Estimated functions for the quadratic and cubic specifications.

The linear estimation of the EKC computes the turning point as the value of GDP that satis-

fies the first order condition ∂E
∂GDP

= 0. The derivative of our estimated function in Levels does

not have a real number solution. As Figure 8 shows, there is no local minimum in our cubic

estimation. For comparison, we estimated a quadratic specification of the model for which the

turning point is found at 53,125.00 per capita units of GDP. Around the quadratic income level

that achieves the turning point, increase in emissions of the cubic specification seems to slow

down. However, they increase after that. Although this could be analytically interpreted as

evidence for the linking and delinking hypothesis, results should be interpreted with caution.

Less than 5% of the sample observations exceed the threshold value.17.

17Some authors have even found out-of sample turning points.For instance [14, 57]
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4.2 Non-parametric estimation

The non-parametric approach was carried out by estimating three versions of equation (3). The

first one was a Kernel regression using the improved Alkaike Information Criterion and boot-

strapped standard errors. That is Eit = f(Yit) + εit. Unfortunately, this approach is cannot

separate the function in more than one component, or include linear effects in the specification.

The second version estimated follows the general specification proposed by Vollebergh et al.

[71]. The equation is Eit = f(Yit) + λ(τ) + εit, Finally, we estimate (3) without any further

alteration. The graphical results are shown in Figure 9. Although the non-parametric approach

generates an inverted U-shape EKC similar to the one estimated in the quadratic linear specifi-

cation, we can observe that the income-emission trajectory predicts higher emission levels after

GDP reaches 10,000.

Figure 9: Predicted emissions for the linear and non-parametric specifications. 95% confidence interval

in shadows.

The turning point of the non-parametric approaches is approximately near the one in the

quadratic estimation at 50,000 GDP., coinciding with the quadratic estimation. The standard

errors of the model also increase around this value. Again, we attribute this result to the few

observations that surpass this level of income and the heterogeneity in the emissions per unit

of GDP. For instance, during 2014, Switzerland’s GDP per capita was 66,038.73 and emitted

4.31 metric tons per capita of CO2. In the same year, with a lower GDP per capita (57,313.85),

the US emissions were almost four times larger.
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Table 3: Polynomial and semi-parametric estimation results.

Variables
Linear

Semi-parametric
Quadratic Cubic

GDP 0.000306*** 0.000496***

(1.99e-05) (3.61e-05)

GDP2 -2.88e-09*** -9.81e-09***

(2.43e-10) (1.08e-09)

GDP3 7.09e-14***

(1.06e-14)

Share of S1 0.0121 0.0207*** 0.00916

(0.00805) (0.00747) (0.0134)

Share of S2 0.0597*** 0.0559*** 0.0860***

(0.00919) (0.00851) (0.0123)

Share of S3 -0.00418 -0.00398 -0.0327**

(0.00835) (0.00800) (0.0130)

Exports -0.0141*** -0.0137*** -0.0162***

(0.00341) (0.00331) (0.00330)

Urban population 0.0935*** 0.0824*** 0.0206***

(0.00825) (0.00750) (0.00364)

Population growth 0.137*** 0.121*** -0.226***

(0.0428) (0.0389) (0.0491)

Renewable electricity -0.0190*** -0.0179*** -0.0296***

(0.00199) (0.00194) (0.00166)

Constant -4.045*** -4.862***

(0.799) (0.771)

Country FE YES YES NO

Year FE YES YES Non-parametric

Observations 2,101 2,101 2,101

R-squared 0.980 0.981

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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The specifications that omit control variables yield similar results.18, regardless if time effects

are considered or not. By including control variables, the shape of the curve changes its slope

for different income levels.

The significant coefficients for control variables vary only within the standard errors when

the linear specification is augmented from a second to a third-degree polynomial. When the

model is non-parametric in income and time, all the control coefficients vary significantly ex-

cept for the share of services and exports.

4.3 Heterogeneity analysis

If imposing linear restrictions in the EKC functional form leads to biased results as argued

by Stern [64] or identification problems, a potential solution would be the estimation of non-

parametric models [5, 71] as we did on the previous subsections. However, pairs of data on

income and emissions for the wealthiest countries exhibit differentiated trends. In order to iden-

tify them, we attempt to explain the sources of heterogeneity considering the control variables

included in our model as plausible candidates. First, we conduct the Hsiao test for heterogene-

ity [33].19

Table 4: Estimated F-statistics for the Hsiao test.

Hypothesis Estimated F-statistic p-value

H1: Identical slopes, heterogeneous intercepts 9.7547 0.0000

H3: Identical coefficients 152.0062 0.0000

H4: Identical intercepts conditional on identical slopes 274.1231 0.0000

Table 4 presents the estimated F-statistic and the associated p-value for each of the hypothe-

ses of the test. Following the procedure proposed by Hsiao, the hypothesis H3 of full parameter

homogeneity is rejected. The hypothesis H1 of identical slopes is also rejected, confirming the

full heterogeneity of the model. Usually, the tests halt when H1 is rejectd. H4 is presented

for illustrative purposes. Since the test analyses the covariance across different assumptions on

the parameter’s behavior is important to note that the smallest RSS is found for the individual

country regression estimates. Imposing a homogeneity restriction on the parameter values and

18Thus, only report the specification including non-parametric time effects.
19The test procedure and our results can be consulted in Appendix A.2.
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turning points for the EKC in our model will result in coefficients unable to predict individ-

ual country behavior. Results are consistent with those found by de Bruyn [20] and confirm

heterogeneity in the income-emission relationship found by other authors [35, 53, 55, 70].

Using the regression tree approach to classify the data and estimating under the regression

tree approach, we obtain the results summarized in Figure 10. Although it was not reported, the

previous linear and semi-parametric estimates for the time variable were found to be statistically

not significant. With a few exceptions, most of the countries were classified within the same

category over the years. For this reason, the year variable did not generate meaningful splits to

categorize the data. Subsequently, we will generalize the results as depicting characteristics of

representative economies.
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Figure 10: Regression tree model results

The essential variable to generate splits in our model is GDP per capita, producing at least

four country categories. Despite this values do not correspond to the World Bank Classification

Income Classification, we will adopt the same naming.20 Emissions for Low income countries

20The current World Bank thresholds [66] of income are Low income up to 1,026 GDP; Lower-middle income

up to 3,995; Upper-middle income up to 12,375; and High income all countries above. Our lowest GDP edge

classified Low income countries amidst middle income countries.
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(GDP<7,145.82) are the lowest across the sample. No further variable can explain differences

for this group. Lower-middle income countries with a GDP per capita between 7,145.8 and

15,865.7 emit less CO2 gases if the renewable electricity generation accounts for more than

37% of the total output. Renewable electricity generation is also relevant for Upper-middle

income countries. However, their average electricity generation is 14.78% lower than Lower-

middle income countries. Thus, overall emissions are larger.

Figure 10 portrays the increasing complexity of the income-emission relationship as the

income levels increase, which can also be appreciated in Figure 11, where the resulting regions

of three regression tree are mapped on top of the scatter plot. For the High income countries,

the first relevant distinction is the value of their exports represented as a share of the GDP. For

countries with the lower level of exports, emissions are linked to population growth. We must

remark the scarcity of countries classified on the nodes L10 and L11 with low levels of exports.

Only Australia and the US belong to the node L11 (high income and high population growth),

while node L10 only classifies Japan during all periods, and three years for Italy and Greece.

Figure 11: Income-emission classification according to the regression tree results.

For countries with high exports (exceeding 20.26%), the lowest CO2 emission levels are

found when either the industrial activity or the share of urban population is lower than the rest.

Secondly, emissions are higher when renewable electricity accounts for less than 10.88% of the

electricity output. Finally, when both industrial activity and urban population is high, emissions

are the second largest among all the nodes, despite renewable electricity generation outpacing

the threshold.
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Table 5: Marginal effects of the variables according to the mean values classified by the regression tree.

Node

Mean values Emissions

GDP Renewable
Exports

Share of Urban Population
Average

Semi-parametric

per capita electricity industry population growth Predicted 95% interval

L1 3350.47 0.83 1.01 0.78 1.25

L2 10775.74 73.57 1.88 2.42 2.17 2.68

L3 10891.92 10.09 5.17 4.34 4.01 4.67

L4 22375.23 43.13 4.65 5.58 5.22 5.94

L5 21981.1 7.82 7.91 6.49 6.1 6.89

L6 43796.27 36.16 40.07 22.78 6.99 9.26 8.79 9.72

L7 43939.91 58.83 43.86 28.8 66 7.63 9.25 8.76 9.74

L8 44097.94 54.07 37.07 30.19 79.6 12.34 9.93 9.41 10.44

L9 40102.27 4.13 48.14 10.42 9.82 9.35 10.3

L10 35777.03 13.53 0.14 9.13 9.18 8.79 9.57

L11 44654.46 14.16 1.13 17.85 10.15 9.6 10.7

Note: Predicted emissions are estimated only with the values shown in each node.

As a final step in our strategy, we computed the average values for each node’s relevant

variables and plugging the values in the mean function of income and the linear coefficients

associated with the control variables of the semi-parametric estimation of the previous subsec-

tion. Table 5 presents the input values and the prediction results. Out of the 11 nodes, the

semi-parametric function only achieved to estimate the average CO2 emissions within the 95%

confidence interval at nodes L1 and L10. Unfortunately, there is no proper metric to contrast a

regression tree with a semi-parametric estimation. Since the regression tree method computes

the actual average of CO2 emissions for each terminal node, we might expect that the results of

an adequate linear prediction resemble the mean values of each node. This was not the case.

5 Discussion and conclusions

Our main conclusion is confirming that the heterogeneity of the EKC shape for individual

countries found by previous literature [20, 35, 53, 55, 70]. As observed in Figures 11 and

10, the income-emission relationship cannot be explained only by differences in income levels.

Even countries within similar income groups can emit different amounts of CO2 conditionally

on the value of other variables relevant to economic growth. In other words, the scale effect is
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not sufficient to portray a single path of emission development.

The generation of renewable electricity can alter the income-emission relationship between

countries. A surprising fact found in our data is that renewable electricity generation is propor-

tionally higher in Low and Lower-middle income countries than the rest. Hence, it is directly

related to lower CO2 emissions. Following Smulders et al. [62], enhanced and environmentally

friendly technology should be used in more developed countries. Since renewable electricity

can be considered as one, we find the opposite.

Energy is a relevant variable to promote economic development. For instance, Wolfram et

al. [73] perform a country-level empirical examination. Controlling for simultaneity and endo-

geneity issues, they expose that energy demand, poverty reduction, and pollution are associated.

Our results for High income countries seem to contradict those of Glaeser and Kahn [30] who

identify that cities tend to have lower CO2 emissions than suburban areas. In contrast, we find

that higher concentrations of urban populations yield higher per capita emissions. This finding

coincides with the recent papers of Borck and Schrauth [6], and Carozzi and Sefi Roth [12].

A potential explanation is pointed out by Moreno-Cruz and Taylor [52], who develop a model

in which cheap and available energy is required to foster urban growth. Further research is

required on this subject.

Since the exports variable was only meaningful for high income countries, we do not detect

evidence in favor of the Pollution Heaven or the Race to the Bottom hypotheses. It would

have been the case if different levels of exports generated splits for the lower income countries.

Cherniwchan et al. [15] reaches a similar conclusion.

The composition effect might be relevant for high income countries with larger shares of

urban population. Our regression tree results only generated splits for the industry sector,

probably because of the hump-shaped pattern shown in Figure 6. We cannot say more about

the interactions of different sectors.

Potentially, incorporating technological development in the model could modify these re-

sults. However, we could not use a suitable variable to incorporate in our models. Hopefully,

in the future, more appropriate measurements will be available.

All the variables’ implications described above illustrate not only the CO2 emissions gen-
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erated by an economy but also the underlying characteristics that shape growth. We consider

that theoretical and empirical research on the environmental linking and de-linking process of

development should be done, as different income-emission relationships might arise. For in-

stance, if we imagine a country in transit from node L1 to L6, going through L2 and L4, the

development process would be accompanied by initial investments on renewable energy and a

less industrialized economy. On the other hand, we would characterize the opposite from L1 to

L11, through L3 and L5. Other meaningful variables can operate in-between, but they are yet

to be recognized.

We contribute to the existing literature by introducing the estimation of regression trees as

a data analysis methodology seldom used in economics to examine differentiated implications

of variables. With this approach, further research can improve the application of structural

econometric analysis to face econometric identification challenges [37]. Second, our analy-

sis suggest that biased estimations can arise in both linear and semi-parametric estimations.

Our results for linear specifications approximated a turning point similar to those of the semi-

parametric approach. However, the predicted CO2 emissions were lower, suggesting probable

bias. Likewise, the analytical examination of the data, after applying the regression tree method

showed that the semi-parametric estimations could also yield inaccurate estimates. Subsequent

research must focus on determining whether dynamic interaction of variables such as industrial

activity, population growth, urban population, or others have linear or dynamic implications in

emissions.

Some of these results could be of interest to policy makers. Estimations of the urban popu-

lation growth in the world place developing countries as faster-growing than developed coun-

tries. We have provided evidence that sustainable energy generation is related to lower CO2

emissions, while the concentration of urban population can be associated. Thus, further efforts

should be made to jointly reduce urban and energy interrelated emissions.

References

[1] Philippe Aghion et al. “Carbon Taxes, Path Dependency, and Directed Technical Change: Evi-

dence from the Auto Industry.” In: Journal of Political Economy 124.1 (Feb. 2016), pp. 1–51.

ISSN: 00223808.

31
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A Appendix

A.1 Selection criteria

Table 6: Removal reasons.

Code Reason

A Small states

B Mainly oil producers (share of oil in GDP >80%)

C Industry not reported

D Share of industry <10%

E Share of services >60%

F GDP >70,000

G Observations <20 or emissions not reported

H Armed conflicts interrupting the data set from 1990 - 2014

I Presence of severe outliers

J Low statistical score (<60) according to the Statistical Capacity Indicator in 2010

Note: Criteria A, B, and J are similar to the sample definition by Mankiw, Romer and Weil [47].

The included countries by income level are:

Low income: Burkina Faso, Madagascar, Malawi, Mali, Mozambique, Niger, Rwanda, Tan-

zania, Uganda.

Lower middle income: Bangladesh, Bolivia, Cambodia, Cameroon, Egypt, El Salvador,

Ghana, Honduras, India, Kenya, Kyrgyz Republic, Lao PDR, Mauritania, Moldova, Mongolia,

Morocco, Nicaragua, Nigeria, Pakistan, Philippines, Senegal, Tunisia, Ukraine, Vietnam.

Upper middle income: Albania, Argentina, Belarus, Bosnia and Herzegovina, Brazil, China,

Colombia, Dominican Republic, Ecuador, Georgia, Guatemala, Jordan, Kazakhstan, Malaysia,

Mexico, North Macedonia, Paraguay, Peru, Romania, Russian Federation, South Africa, Sri

Lanka, Thailand, Turkey.

High income: Australia, Austria, Belgium, Canada, Chile, Croatia, Czech Republic, Den-
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mark, Finland, France, Germany, Greece, Hungary, Ireland, Israel, Italy, Japan, Korea, Rep.,

Latvia, Lithuania, Netherlands, New Zealand, Norway, Panama, Poland, Portugal, Slovak Re-

public, Slovenia, Spain, Sweden, Switzerland, United Kingdom, United States, Uruguay.

A.2 Hsiao test

The test is built upon an analysis of covariance with restrictions imposed on the individual

regression for cross-sectional units:

yit = αi + β′
iXit + uit (4)

Where i = 1, . . . , N , t = 1, . . . , T , β′
i is a vector of 1 × K constant parameters, Xit is the

1 ×K vector of exogenous variables, and uit is the error term. (4) can be slightly modified to

test heterogeneity across time. Since this thesis focuses on heterogeneity across countries, we

will not test for this.

The restrictions are formulated considering a system of four hypotheses.

H1 : Slope coefficients are identical, intercepts are not.

α1 6= α2 6= . . . 6= αN and β1 = β2 = . . . = βN

H2 : Intercepts are identical, slope coefficients are not.

α1 = α2 = . . . = αN and β1 6= β2 6= . . . 6= βN

H3 : Both slope and intercept coefficients are identical.

α1 = α2 = . . . = αN and β1 = β2 = . . . = βN

H4 : Provides a more thorough examination if H1 is accepted: Both slope and intercept

coefficients are identical.

α1 = α2 = . . . = αN , given β1 = β2 = . . . = βN .

The test requires computing the Residual Sum of Squares of the unrestricted equation (4)

and of regressions consistent with fixed effects and a pooled models. The unrestricted sum of
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squares S1 =
∑N

i=1 RSSi is equivalent to compute individual country regressions and adding

all the resulting sum of squares. S2 = RSSFE and S3 = RSSPooled. Then, the procedure of

the test is carried out by the process of hypotheses elimination by computing F-statistics.

First, H3 must be tested. The associated F-statistic is:

F3 =
(S3−S1)/[(N−1)(K+1)]

S1/[NT−N(K+1)]

If the test is not significant, H3 cannot be rejected and the model can be estimated by a pooled

panel method. In the contrary case, the researcher must investigate whether the source of

heterogeneity relies on the intercept or slopes.

The F-statistic to test H1 is:

F1 =
(S2−S1)[(N−1)K]
S1[NT−N(K+1)]

In this step of the test, we have rejected the assumption of full homogeneity in the model. Al-

though H2 is formulated, the interpretation of a common intercept with heterogeneous slopes

lacks any useful meaning. The logical conclusion, if F1 is significant, will be to keep the as-

sumption of heterogeneous slope and intercept parameters. However, in the cases when H1

is accepted, Hsiao suggest examining if intercepts are heterogeneous conditional on homoge-

neous slopes. H4 should be tested.

F4 =
(S3−S2)/(N−1)
S2/[N(T−1)−K]

If H4 is accepted, then the pooled model is sufficient. If rejected, the estimation model should

include individual effects.
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Table 7: Covariance of Hsiaos’ tests for homogeneity.

Residual sum of squares Degrees of freedom

Source of variation Value Formula Value

S1: Within group with heterogeneous intercept and slope 460.6923 N(T −K − 1) 1,857

S2: Constant slope and heterogeneous intercept 1,114.089 N(T − 1)−K 2,127

S3: Common intercept and slope 1,4036.41 NT − (K + 1) 2,217

Note: Adapted from Hsiao [33, p. 22]. Own estimation results.

A.3 Results of testing the linear specification

Table 8: VIF test for different polynomials under different transformations of GDP.

Polynomial Levels Differences Logarithmic Logarithmic differences

GDP 12.314 58.487 195.662 5.229 17.171 43.022 211.955 24,064.643 2,038,979 56.011 2,765.962 116,911.32

GDP2 12.314 295.283 2,961.136 5.229 102.197 731.081 211.955 102,045.008 20,008,402 56.011 11,255.443 1,111,999.625

GDP3 111.012 5,615.075 48.704 1,727.396 27,349.932 22,143,938 2,991.033 1,226,692.125

GDP4 1,192.139 443.008 2,756,837.25 156,000.078

Mean VIF 12.314 154.927 2,491.003 5.229 56.024 736.127 211.955 51,153.194 11,737,039.063 56.011 5,670.813 652,900.787

Table 9: Results of the Wooldridge test for autocorrelation in panel data.

Polynomial
Levels Logarithmic

F-statistic p-value F-statistic p-value

GDP 28.591 0.0000 132.218 0.0000

GDP2 24.262 0.0000 134.871 0.0000

GDP3 23.663 0.0000 132.841 0.0000

Table 10: Results of the the Westerlunnd test for cointegration.

Levels Differences Logarithmic Logarithmic differences

Trend No trend Trend No trend Trend No trend Trend No trend

Variance ratio -6.1302 -1.5071 -9.6888 -11.9406 -5.9161 0.0460 -9.5185 -12.0879

p-value 0.0000 0.0659 - - 0.0000 0.4817 - -

Notes: Linear: GDP = x; Logarithmic: GDP = lnx; Differences: GDP = xt − xt−1;

Logarithmic differences: GDP = lnxt − lnxt−1
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A.4 Regression tree method

This section is based on Chapter 8 of James et al. [34] and Chapter 8 of Breiman et al. [8].

A regression tree is a method based developed for machine learning that provides tools for

classifying and generating regressions by splitting the predictor space into simpler regions

based on a least-square condition. The notion is to divide the predictors X1, X2, . . . , Xp into

J distinct and non-overlaping regions R1, R2, . . . , RJ . For each region, the mean of the objec-

tive variable y is computed as the predicted value ŷRj . Then, the residual sum of squares is

computed:

RSS =
J∑

j=i

∑

i∈Rj

(yi − ŷRj)
2 (5)

Due to the computational limitations of every possible interaction, the absolute minimum value

of equation (5) is unfeasible to estimate. For this reason, the algorithm follows a recursive

binary splitting approach. Any predictor Xp is selected and a cutpoint s that divides the sample

in two spaces is defined:

R1(j, s) = {X|Xj < s} and R2(j, s) = {X|Xj ≥ s}

By recursive itineration, the algorithm stops when the values of j and s minimize

∑

i:xi∈R1(j,s)

(yi − ŷR1
)2 +

∑

i:xi∈R2(j,s)

(yi − ŷR2
)2 (6)

That is, for each p variable, the algorithm sets different values of s until (6) is minimized. Then,

the minimum residual values for each Xp is compared and the first split of the data is generated

for the predictor with the lowest result of (6). The process is repeated for each region until a

stop criterion is reached.

A tree diagram similar to the one in Figure 10 illustrates the results of the model. The splits

(or branches) are based on the criteria exposed in the previous paragraph. The reader shall

move to the left if the criteria is meet and to the right if not. Each terminal node (or leave)

indicates when further splitting of the data does not lead to minimize (6) and the ŷRj
average is

computed for of all the observations that meet the criteria established by the branches above.
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The regression tree technique is prone to overfitting the data. In an extreme case, the ideal

number of regions will be equal to the number of observations and the residual sum of squares

would be 0. To avoid this problem, adjusting the algorithm parameters to halt the process is

necessary. This process is called tree pruning. It requires that the researcher stet threshold

values, after which the algorithm fully or partially stops. The usual approach to prune the

model is by starting with the largest possible tree and adjusting the error complexity measure

|T |∑

m=1

∑

i:xi∈Rj

(yi − ŷR2
)2 + α|T | (7)

Where |T | represents the number of terminal nodes of the tree and α is a tuning parameter

chosen from a validation set or by cross-validation. α is a function of |T |. Thus, it allows

choosing the number of branches that yield no additional gains in further splits. Additionally,

the researcher can set the minimum number of observations to either be included in each ter-

minal node or to generate a split. Subsequently, we will follow both approaches. Another

important measure to evaluate the model performance is the variable importance that summa-

rizes the goodness of fit of each split on which it was the primary variable defining a split plus

the goodness of fit of all splits on which it was a surrogate. The rpart package in R scales the

values to sum 100 [67].

Like many machine learning tools, the regression tree requires to split the sample into two

subsamples containing about 80% and 20% of the data. The sample containing 80% of the

variables is used to train the tree model and adjust the algorithm’s parameters. The model

structure is evaluated using the remaining 20% of the sample to compare the prediction errors

in both models. Unfortunately, reducing the sample size to estimate the goodness of fit of the

model leads to RSS uncomparable to those obtained in linear or non-parametric estimations.

Figure 12: Variable importance values.
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In the first model we identified that the variable for years was the least relevant for the model.

It was omitted in the final estimation as it failed to generate any branches in the tree. Although

the Share of industry was scored lower than services and agriculture, the latter did not generate

any splits in our data. The higher relevance of the variables is that if omitted, the classification

would be different and generate splits that increase the RSS.

The minimum predicted error generated by the number of branches was found at 11 splits.

However, after 10 splits, the increase of the tree complexity adds little information to the pre-

dicted values. A second model was generated by limiting the complexity parameter to match

the 10 splits, removing the least essential variables and setting the minimum number of obser-

vations in a branch to 20.

Figure 13: Complexity parameter, tree size and relative error.

As the second model proved to not substantially increase the RSS in the test subsample (Go-

ing from 2.01 in the original model to 2.14 in the adjusted), we applied the tuning parameters

to the full dataset. The resulting tree model is the one described in the main text. For repro-

ducibility the code is presented in the following Annex.

A.5 Regression tree code in R

The model requires the packages: tree, MASS, tidiverse, rpart, rpart.plot, Metrics and gbm.

The full code and dataset are available upon request.

Tree data <− WB d a t a 3 %>%

d p l y r : : s e l e c t ( year , co2 pc , gdp pc , e x p o r t s perc , pop growth ,
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s1 perc , s2 perc , s3 perc , e x p o r t s perc ,

u rban perc , renew o u t p e r c )

s e t . s e ed ( 7 3 )

a s s i g n m e n t <− sample ( 1 : 2 , s i z e = nrow ( Tree data ) ,

p rob = c ( 8 0 , 2 0 ) , r e p l a c e = TRUE)

Tree t r a i n <− Tree data [ a s s i g n m e n t == 1 , ]

Tree t e s t <− Tree data [ a s s i g n m e n t == 2 , ]

Tree model <− r p a r t ( formula = co2 pc ˜ . ,

data = Tree t r a i n ,

method = ” anova ” )

p r i n t ( Tree model$ c p t a b l e )

o p t index <− which . min ( Tree model$ c p t a b l e [ , ” x e r r o r ” ] )

cp o p t <− Tree model$ c p t a b l e [ o p t index , ”CP” ]

summary ( Tree model )

p r i n t ( Tree model )

r p a r t . p l o t ( x = Tree model , yesno = 2 , t y p e = 0 , e x t r a = 1)

p l o t c p ( Tree model )

cp t a b l e model <− data . frame ( Tree model$ c p t a b l e )

row b e s t model <− which ( cp t a b l e model$ n s p l i t == 10)

b e s t cp model <− cp t a b l e model$CP [ row b e s t model ]

Tree model a d j u s t <− r p a r t ( formula = co2 pc ˜ gdp pc +

urban p e r c + s1 p e r c + s2 p e r c + s3 p e r c +

renew o u t p e r c + pop growth + e x p o r t s perc ,

data = Tree t r a i n ,

method = ” anova ” ,

c o n t r o l = r p a r t . c o n t r o l ( minbucke t = 20 ,
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cp = b e s t cp model ) )

summary ( Tree model a d j u s t )

p r i n t ( Tree model a d j u s t )

r p a r t . p l o t ( x = Tree model a d j u s t , yesno = 2 , t y p e = 0 , e x t r a = 1)

p l o t c p ( Tree model a d j u s t )

p r ed model <− p r e d i c t ( o b j e c t = Tree model , newdata = Tree t e s t )

p r ed a d j u s t e d <− p r e d i c t ( o b j e c t = Tree model a d j u s t ,

newdata = Tree t e s t )

RMSE model <− rmse ( a c t u a l = Tree t e s t $ co2 pc ,

p r e d i c t e d = pred model )

RMSE a d j u s t e d <− rmse ( a c t u a l = Tree t e s t $ co2 pc ,

p r e d i c t e d = pred a d j u s t e d )

Tree FINAL <− r p a r t ( formula = co2 pc ˜ gdp pc + urban p e r c +

s1 p e r c + s2 p e r c + s3 p e r c +

renew o u t p e r c + pop growth + e x p o r t s perc ,

data = Tree data ,

method = ” anova ” ,

c o n t r o l = r p a r t . c o n t r o l ( minbucke t = 20 ,

cp = b e s t cp model ) )

summary ( Tree FINAL )

p r i n t ( Tree FINAL )

r p a r t . p l o t ( x = Tree FINAL , yesno = 2 , t y p e = 0 , e x t r a = 1)
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