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Abstract

Previous literature suggests that Pareto-improving climate mitigation is feasible

if it is mixed with intergenerational transfers. We study the existence of Pareto-

improving social contracts—consisting of climate mitigation efforts and intergenera-

tional transfers—between two consecutive generations. We aim to analyze the Pareto-

improving set of social contracts with different levels of intertemporal consumption

substitutability. We also compare the Pareto-improving contracts’ set under a capital

income subsidy and a lump-sum transfer scheme. We employ an overlapping genera-

tions model in which households live for two periods: in the first period they work and

earn labor income, and in the second period they retire and earn capital income from

their savings. We find that, if discouraging saving is advantageous, a lower degree of

intertemporal consumption substitutability increases the Pareto-improving set of so-

cial contracts. A savings reduction is beneficial if the capital accumulation externality

is high and the interest rate is low compared to the population growth rate. Con-

versely, if a decrease in savings is undesirable, lowering the substitutability decreases

the Pareto-improving contracts’ set. We also find a similarity when comparing the

two contract schemes. If a decrease in savings is advantageous, a scheme that results

in a greater reduction in savings has a higher Pareto-improving contract’s feasibility.

Our findings therefore emphasize the importance of evaluating the effects of a savings

reduction on the economy.

Keywords Overlapping generations models · Social contract · Climate miti-

gation · Intertemporal consumption substitutability · Pareto improvement · Capital

income subsidy · Lump-sum transfer · Savings
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1 Introduction

Climate change exposes our planet to greater risks of disaster, such as a rise in sea levels,

wildfires, and the spread of diseases (Tol, 2019; Nordhaus, 2008). Climate change miti-

gation efforts are then necessary to reduce the climate damage risks in the future. While

the efforts are performed currently, the fruits of such efforts will only become apparent

after at least half a century (Nordhaus, 2013). As a result, climate policy is often seen as

a trade-off between the current generation and future generations. This viewpoint may

mislead policy decisions because it is possible to determine a policy mix—consisting of

climate mitigations and intergenerational redistributions—in a Pareto-improving manner,

that is, one’s welfare could be better-off while holding the others’ welfare constant (or even

better-off) (e.g. Kotlikoff, Kubler, Polbin, Sachs, & Scheidegger, 2021; Dao, Burghaus, &

Edenhofer, 2017; von Below, Dennig, & Jaakkola, 2016; Heijdra, Kooiman, & Ligthart,

2006; Bovenberg & Heijdra, 2002, 1998). Furthermore, utilizing intergenerational redis-

tribution could increase the political feasibility of the climate mitigation efforts (Van der

Meijden, Van der Ploeg, & Withagen, 2017).

We study the existence of Pareto-improving social contracts consisting of mitigation efforts

and a pay-as-you-go (PAYG) pension system. At a certain period, the young generation

transfers some amount to the old generation. The young generation then grows old, and

they will also receive a transfer from the young generation in that same period (Heijdra,

2009). The transfer in a PAYG fashion therefore causes intergenerational redistributions.

This scheme could then be combined with climate mitigation efforts to establish social

contracts between generations.

This thesis follows Dao et al. (2017) who examine the existence of pareto-improving so-

cial contracts with intergenerational transfers based on a capital income subsidy scheme

instead of lump-sum transfers. This would be interesting since previous literature mostly

employed lump-sump intergenerational transfers in their models (e.g., Kotlikoff et al.,

2021; von Below et al., 2016; Heijdra et al., 2006). We change the utility and the pro-

duction function employed in Dao et al. (2017) into the constant elasticity of substitution

(CES) function to generalize the model with differing elasticities of substitution. A dif-

ferent intertemporal consumption substitutability could affect the result regarding the

existence of Pareto-improving social contracts. This is because intertemporal elasticity of

substitution corresponds to a certain intertemporal inequality aversion (usually denoted

by η), which is an important parameter in estimating optimal climate policy (Nordhaus,

2008). Furthermore, most of the empirically estimated intertemporal inequality aversion

shows that individuals are more inequality averse than logarithmic utility (η = 1). For

example, Drupp, Freeman, Groom, and Nesje (2018) estimate the mean of η = 1.35.
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A meta-analysis by Groom and Maddison (2013) results in η = 1.5 as their best-guess

estimate.

We also develop an overlapping generations (OLG) model for a lump-sum transfer scheme,

which is a modification of the OLG model for a capital income subsidy scheme employed

by Dao et al. (2017). This allows us to compare these two schemes. We are particularly

interested in whether one of the schemes has a higher of Pareto-improving set of social

contracts. A larget set of Pareto-improving contracts improves the feasibility for a social

contract to be established.

Two research questions are formulated. (1) What are the effects of intertemporal con-

sumption substitutability on the existence of Pareto-improving social contracts? (2) How

does a different scheme of intergenerational transfers, capital income subsidy and lump-

sum, affect the feasibility of Pareto-improving social contracts? We therefore have two

main findings for this thesis. First, lowering intertemporal consumption substitutabil-

ity increases the feasibility of the existence of Pareto-improving social contracts provided

that discouraging savings is beneficial. Second, a scheme which causes a stronger decrease

in savings has a higher Pareto-improving contracts feasibility if a decrease in savings is

beneficial.

In the next section, we will review past studies that have used OLG models to analyze the

climate change or stock pollution case. Section 3 provides the model used for this thesis,

which mainly follows Dao et al. (2017) except that we use CES utility and production

function. We also develop the model under the lump-sum transfer scheme. Section 4

discusses the calibrations and results of the models. We conclude this thesis in section 5

and describe its limitations.
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2 Literature Review

The model employed for this thesis is called an overlapping generations (OLG) model.

The OLG model assumes that generations are selfish, so they act to maximize their own

lifetime welfare without taking into account the welfare of future generations. In contrast,

infinitely-lived agent (ILA) models assume altruistic agents, which explains bequests from

the old generations to the young generations (Heijdra, 2009). The OLG model is suitable

for analyzing climate policy because it involves multiple generations, whose decisions may

not consider the well-being of their future descendants (Gerlagh & van der Zwaan, 2001).

One of the workhorses of the OLG model was formulated by Samuelson (1958). He de-

veloped a discrete-time OLG model that describes the consumption and savings decisions

during the lifetime of a representative agent. He concluded that under an OLG model,

there exists dynamic inefficiency because the young generation over-save. The over-saving

could be reduced by implementing a PAYG social security system because the PAYG

pension transfers will be received, and these transfers would act as a substitute for the

young agent’s savings. Because the PAYG system implies intergenerational transfers, this

instrument could be used to redistribute the welfare effects of climate policy. Therefore,

this OLG model with PAYG transfer schemes is often analyzed in the past literature

concerning climate change (e.g., Dao et al., 2017; von Below et al., 2016).

The existing literature studying intergenerational distribution and climate change varies

in their modelling assumptions. Foley (2009) assumes that the economy is dynamically

inefficient because there is an intergenerational externality due to climate change. In this

case, there are misallocations in the investment decision, that is, the present generation

overinvests in physical capital. He then suggests the combination of climate mitigation

and public debt, while noting that raising public debt will increase the interest rate and

crowd-out conventional investment. Bovenberg and Heijdra (2002, 1998) draw the same

conclusion regarding a pollution stock problem using an OLG model. They also assume

an endogenous interest rates and propose that public debt policy with a capital income

tax could accomplish a Pareto-improvement between generations. Heijdra et al. (2006)

utilized an OLG model in the context of a small-open economy where interest rates are

exogenous, and their model yields similar results that the policy mix of capital income tax

and public debt leads to pareto-improving welfare. Kotlikoff et al. (2021) adopted an OLG

model and combined it with the DICE model from Nordhaus (2013) to provide a more

reliable translation of climate change damage to the economy. They also agree with the

discussed literature above, and they also propose a policy mix of carbon tax and public

debt which could result in uniform welfare gains for all generations.
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Other than through public debt, welfare between generations could also be redistributed

via the PAYG green pension scheme. Such a scheme was studied using an OLG model

by Dao et al. (2017) and von Below et al. (2016). Both of them involve intergenerational

contracts between generations at successive periods. The agreement consists of an emission

limit and lump-sum pension transfers in von Below et al. (2016), while Dao et al. (2017)

consider mitigation efforts and a capital income subsidy. Nevertheless, both studies show

the same result: they prove the existence of pareto-improving intergenerational contracts

consisting of a combination of climate mitigation efforts and pension transfers. However,

the existence of Pareto-improving social contracts in Dao et al. (2017) requires that the

net income be high enough, surpassing a certain net income threshold. Their result stems

from their model specification that climate mitigation is carried out as a share of net

income.

All the previous literature reaches the same consensus regarding the potential of utilizing

either public debt or a green pension scheme to achieve a Pareto-improving climate policy,

with some exceptions in Dao et al. (2017). Therefore, we employ the OLG model based on

Dao et al. (2017) but with a more general utility and production function. Instead of using

a logarithmic utility function as in Dao et al. (2017), we specify a CES utility function. This

allows us to examine the effects of intertemporal elasticity of substitution on the existence

of Pareto-improving social contracts. Likewise, we also conduct a more generalized version

of the production function by using a CES production function rather than a Cobb-

Douglas function. We therefore contribute to the literature pertaining to intergenerational

distribution and climate change with pension transfers, which is relatively more scarce

compared to public debt instruments.
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3 The Model

3.1 Capital Income Subsidy Scheme

The OLG model for the intergenerational social contracts with capital income subsidy

scheme is shown in Figure 1. Because an agent lives in two periods, there are two genera-

tions that overlap in the same period. In Figure 1, old generation G0 coexists with young

generation G1 in period 1. An intergenerational social contract consists of two commit-

ments: an investment for mitigation denoted by the mitigation share mt and a transfer

rate for the old generation as a capital income subsidy τ ot+1 . If the contract (m0, τ
o
1 ) is

signed between G0 and G1, the mitigation share m0 must be performed by G0 by spending

a share of their labor income w0. The total cost for G0 is m0w0, while the benefit is the

total amount of capital income subsidy R1k1τ
o
1 . The terms Rt and kt represent the return

to capital and per capita investment, respectively. Because we assume zero population

growth and the transfers are formulated in PAYG fashion, the total amount paid by G1

and received by G0 must be equal (τy1w1 = R1k1τ
o
1 ).

1 The benefit for G1 is a higher labor

income due to the climate mitigation performed in period 0. In the beginning of period 1,

if G1 and G2 also signed the contract (m1, τ
o
2 ), the transfer and the mitigation commitment

are also undertaken in the same manner. The climate mitigation must be performed by

G1 in period 1, and they will receive the capital income subsidy in period 2. In period 2,

the succeeding generation G2 has to pay for the capital income subsidy.

Figure 1: Intergenerational social contracts for capital subsidy scheme

1If we assume nonconstant population, the transfers equality become L0(1+n)τ
y
1w1 = L0R1k1τ

o
1 , where

n is the population growth rate.
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3.1.1 The Household

A representative agent of Gt has the following CES utility function:

Vt =
(cyt )

θ

θ
+ β

(cot+1)
θ

θ
; with θ ≤ 1 and θ ̸= 0, (3.1)

where cyt is the consumption of a representative agent when they are young at period t.

cot+1 is their consumption when they are old at period t+1. The parameter β represents the

utility discount factor for the individual. The parameter θ denotes substitution parameter,

and it corresponds to the intertemporal elasticity of substitution given by σu = 1/(1− θ).

A higher θ means that substituting consumption between the two periods becomes easier.

The second interpretation of θ is that θ also reflects an intertemporal inequality aversion

calculated by η = 1− θ (Nordhaus, 2008, p. 173). Households that could easily substitute

their intertemporal consumption implies that they have a low intertemporal inequality

aversion. We also assume perfectly inelastic labor supply.

The representative household faces a budget constraint on their lifetime consumption.

When they are young, the amount of consumption cyt and savings kt+1 must be equal to

their wages after paying for transfer rate τyt and mitigation share mt. When the agent

becomes old, at period t+ 1, they will receive the capital income subsidy at the rate τ ot+1

on top of the return on capital Rt+1 for their savings kt+1. Therefore, we can write the

budget constraints:

cyt + kt+1 = It(1−mt), (3.2)

and

cot+1 = Re
t+1kt+1(1 + τ ot+1), (3.3)

where It represents net income after the transfer to the old agents at period t, that is,

It = wt(1− τ
y
t ). The right-hand side of equation (3.2) is disposable income It(1−mt): net

income less mitigation expenses. There are two assumptions for the formulation of the

budget identities. First, we assume that capital stock fully depreciates in each period, and

therefore the capital stock Kt+1 comes directly from total savings in period t. This implies

StL = Kt+1, so we could then interpret kt both as savings and capital per capita Kt/L.

Second, we assume that the agent has perfect foresight, which results in Re
t+1 = Rt+1

where the expected interest rate converges with the interest rate at period t+ 1.

The agent maximizes (3.1) subject to (3.2) and (3.3), and this yields the optimal con-

sumption and savings decisions:2

kt+1 = s(Rt+1, τ
o
t+1)It(1−mt), (3.4)

2See appendix A.1 for the derivation details.
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cyt =
[

1− s(Rt+1, τ
o
t+1)

]

It(1−mt), (3.5)

and

cot+1 = s(Rt+1, τ
o
t+1)It(1−mt)Rt+1(1 + τ ot+1), (3.6)

where s(Rt+1, τ
o
t+1) denotes the optimal savings rate of the agent:

s(Rt+1, τ
o
t+1) =

(

1

1 + [β
1
θRt+1(1 + τ ot+1)]

θ
θ−1

)

. (3.7)

This savings rate equation is the main difference between our household model and that of

Dao et al. (2017). Their assumption of logarithmic utility yields a constant savings rate,

whereas the savings rate in our model is affected by the interest rate Rt+1 and transfer

rate τ ot+1.
3 The sign of the effects depends on the parameter θ. If 0 ≤ θ < 1, it yields

positive effects on the savings rate, while negative effects occur if θ < 0.4

3.1.2 The Firm and the Pollution Stock

For the models of pollution stock and pollution flows, we follow the formulations from Dao

et al. (2017):

Pt = ξKt − γMt; ξ > 0; γ > 0. (3.8)

The pollution flow at period t, Pt, is positively proportional to the capital stock Kt and

negatively proportional to the mitigation effort Mt. The parameters ξ and γ represent

coefficients which translate the capital stock and mitigation effort to the pollution flow,

respectively. The mitigation effort is equal to the mitigation share in the prior period t−1

times net income Mt = mt−1It−1. This specification reflects that the mitigation benefits

are delayed by one period. For the pollution stock, we write the following function:

Et = (1− δ)Et−1 + ξKt − γMt; with 0 ≥ δ ≥ 1, (3.9)

where δ denotes the decay rate parameter of the pollution stock in the atmosphere. This

pollution stock function stems from the assumption that pollution only comes from the

capital stock. This linear specification of pollution stock is also similar to studies by

3Logarithmic utility in Dao et al. (2017) has savings rate s = β

1+β
. Our model yields the same result if

we impose θ = 0.
4The partial derivative for savings rate with respect to interest rate is as follows:

∂s(Rt+1, τ
o
t+1)

∂Rt+1
=

θ

θ − 1

[s(Rt+1, τ
o
t+1)

2 − s(Rt+1, τ
o
t+1)]

Rt+1
.

The effect of τot+1 on s(Rt+1, τ
o
t+1) could be derived in the same way, and it has the same sign.
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Dao and Davila (2014) and Tabellini (1991). The difference with our model is that the

former assumes pollution originates from both consumption and production, while the

latter assumes pollution comes from consumption. Next, we specify a CES production

function with a constant return to scale:

Yt = z(Et−1)[αK
ρ
t + (1− α)Lρ

t ]
1
ρ ; 0 ≥ α ≥ 1; ρ ≤ 1 and ρ ̸= 0, (3.10)

where z(Et−1) is the total factor productivity in period t, which is negatively affected by

the pollution stock Et−1. The parameter α reflects the weight of capital and labor. The

specification of the total factor productivity is as follows:

z(Et) = Ae−|Et|; A > 0. (3.11)

This functional form implies that climate damage raises at an exponential rate when the

greenhouse gas concentrations in the atmosphere increase. Given the production function

above, we could derive the profit maximizing decisions regarding the capital and labor.

The resource demands are chosen such that their costs (interest rate and wage rate) are

equal to their respective marginal productivities:5

Rt = αz(Et−1)
[

α+ (1− α)k−ρ
t

]
1−ρ
ρ
, (3.12)

and

wt = (1− α)z(Et−1) [αk
ρ
t + 1− α]

1−ρ
ρ , (3.13)

where Rt is the rate of return on capital, and wt is the wage rate at period t. The parameter

ρ is analogous to θ in the utility function, which reflects elasticity of substitution between

capital and labor σp = 1/(1 − ρ). Both (3.12) and (3.13) are written in intensive form,

with kt = Kt/L. It is also useful to determine the ratio of Rt and wt to eliminate most of

the term complexities in the model:

kρ−1
t =

1− α

α

Rt

wt
. (3.14)

3.1.3 Equilibrium

In the market equilibrium, we have a system of equations which incorporates the optimal

behaviour in the household and the firm, with the additional pollution function and the

government’s budget balance condition. Equations (3.4) through (3.7) represent the opti-

mal consumption and savings decisions of the households. In equilibrium, the endogenous

5See Appendix A.2 for the derivation details.
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interest rate Rt+1 must be equal to the marginal product of capital specified in equation

(3.12), by adding the subscripts by one period.

We summarise the system of equations representing market equilibrium in Table 1.

Table 1: System of Equations for Capital Income Subsidy Scheme

cyt =
(

1− s(Rt+1, τ
o
t+1)

)

It(1−mt) (3.15)

cot+1 = s(Rt+1, τ
o
t+1)It(1−mt)Rt+1(1 + τ ot+1) (3.16)

kt+1 = s(Rt+1, τ
o
t+1)It(1−mt) (3.17)

s(Rt+1, τ
o
t+1) =

(

1

1 + [β
1
θRt+1(1 + τ ot+1)]

θ
θ−1

)

(3.18)

It = (1− α)z(Et−1) [αk
ρ
t + (1− α)]

1−ρ
ρ

(

1−
α

1− α
kρt τ

o
t

)

(3.19)

Rt+1 = αz(Et)
[

α+ (1− α)k−ρ
t+1

]
1−ρ
ρ

(3.20)

Et = (1− δ)Et−1 + ξkt − γmt−1It−1 (3.21)

z(Et) = Ae−|Et| (3.22)

These general equilibrium equations have nonlinear simultaneous equations of (3.17) and

(3.20), and thus we cannot solve it analytically for kt+1 and Rt+1. The government’s

budget balance condition must hold. We substitute the ratio of Rt and wt from (3.14) to

obtain the budget balance condition:

τyt =
α

1− α
kρt (τ

o
t ). (3.23)

Noting that It = wt(1−τ
y
t ) and that wages wt must satisfy equation (3.13) in equilibrium,

we then could derive the net income function (3.19). We also need to incorporate the

pollution stock function and the total factor productivity, which we rewrite in equations

(3.21) and (3.22).

We conduct a comparative-static analysis to study the effects of social contracts (mt, τ
o
t+1)

on the households’ consumption-savings decisions. We provide the details of deriving the

partial derivatives in Appendix A.3.
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mt cyt τ ot+1 kt+1 cyt

kt+1 cot+1 Rt+1 cot+1

Rt+1

Figure 2: Effects of Social Contracts with Capital Income Subsidy Scheme

Figure 2 illustrates different channels regarding the effects of the capital income subsidy

social contracts for generation t. Mitigation sharemt affects the young-age consumption cyt
directly via the reduction of disposable income It(1−mt) and indirectly through changes

in savings kt+1. The old-age consumption is affected by the mitigation share mt through

the changes in savings kt+1 and Rt+1. The transfer rate τ ot+1 only affects the young-age

consumption cyt indirectly via savings kt+1, but τ
o
t+1 also affects old-age consumption cot+1

directly. The double arrow between Rt+1 and kt+1 reflects their simultaneity effects on

each other.

First, we consider the effects of mitigation share mt on the optimal savings kt+1:

∂kt+1

∂mt
= −

s(Rt+1, τ
o
t+1)It

1 + θ
θ−1εR,k

(

1− s(Rt+1, τ ot+1)
) < 0, (3.24)

where εR,k is the elasticity of Rt+1 with respect to kt+1.
6 The sign of the partial derivative

(3.24) is always negative because its denominator is always positive. If 0 < θ < 1, the

denominator in (3.24) must be positive because εR,k < 0 and 1 − s(Rt+1, τ
o
t+1) > 0, and

thus the effect of mt on kt+1 is negative. The negative value of εR,k is due to diminishing

marginal return on capital. Imposing θ = 0 also yields a negative sign of (3.24) with a

proportional effect of −sIt. If we impose θ < 0, the denominator becomes smaller, and it

lowers the partial derivative.7

For the intuitive interpretation of (3.24), we emphasize again that the parameter θ reflects

the substitutability of consumption. Suppose 0 < θ < 1, it means that the substitution

between the current and future consumption is relatively easier compared to Cobb-Douglas

utility case. Due to an increase in the mitigation share mt, savings kt+1 decrease, but this

6The elasticity of capital per capita with respect to the interest rate is derived as the following expression:

εR,k =
(ρ− 1)(1− α)

αk
ρ
t+1 + 1− α

< 0; with ρ ≤ 1

7We can rule out a negative denominator because the term θ
θ−1

εR,k (1− s(Rt+1, τ
o
t+1)) cannot be lower

than −1. This is because a higher εR,k also implies a higher s(Rt+1, τ
o
t+1), so |εR,k (1− s(Rt+1, τ

o
t+1)) | < 1.
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decrease in savings also leads to an increase in the interest rate Rt+1. The households then

increase their savings rate, which offsets the first effect of the decrease in savings kt+1. In a

relatively difficult substitution (θ < 0), an increase in interest rate decreases savings rate.

Households are reluctant to sacrifice the current consumption with the future consumption,

so they compensate their lower income with lower savings rate. This reduction in savings

rate thus lowers savings kt+1 even further. Hence, this implies that a lower θ yields a lower

partial derivative (3.24).

Next, we derive the effects of mitigation share mt on the optimal consumption:

∂cyt
∂mt

= −It −
∂kt+1

∂mt
⋚ 0, (3.25)

and
∂cot+1

∂mt
=
∂kt+1

∂mt
(εR,k + 1)Rt+1(1 + τ ot+1) ⋚ 0. (3.26)

For the effect of mitigation share mt on consumption when the agent is young, cyt , the

sign of the partial derivative (3.25) is negative if the decrease in net income It surpass the

decrease in savings. This negative effect occurs for households who are willing to reduce

their young-age consumption (that is, when θ is high). The households who are very

reluctant to reduce their young-age consumption would greatly reduce their savings. This

greater savings reduction, combined with a high |εR,k|, could reverse the sign of expression

(3.25) from negative to positive. The importance of |εR,k| is that it affects households’

lifetime budget. A high |εR,k| would increase interest rate Rt+1 greatly if the households

reduce savings, and therefore increase the budget for their old-age consumption.

The sign of the partial derivative (3.26) is also negative if we assume the elasticity |εR,k| <

1. A high elasticity |εR,k| > 1 could occur if the factor substitutability ρ is very low

and when kt+1 is high.8 Because the mitigation share mt affects the old-age consumption

cot+1 through savings kt+1 and interest rate Rt+1, the size of the reduction in cot+1 largely

depends on the parameter θ. A lower θ implies a higher reduction in savings kt+1, and

then this causes a greater reduction in the old-age consumption. The effect of mitigation

share mt on the old-age consumption is positive when |εR,k| > 1 because of even if they

have lower savings, they still receive higher total return on their savings kt+1.

For the effect of the transfer rate τ ot+1 on the optimal consumption-savings decisions, we

8For Cobb-Douglas production function, εR,k = α − 1 > −1. Therefore, |εR,k| < 1 is reasonable if the
factor substitutability ρ is around 0. If ρ is negative, the savings kt+1 must also be high enough to yield
εR,k < −1.
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derive the following partial derivatives:

∂kt+1

∂τ ot+1

= −
θ

θ − 1
kt+1

(

1− s(Rt+1, τ
o
t+1)

(1 + τ ot+1)

)

⋚ 0, (3.27)

∂cyt
∂τ ot+1

= −
∂kt+1

∂τ ot+1

⋚ 0, (3.28)

and

∂cot+1

∂τ ot+1

= Rt+1kt+1

(

1−
θ

θ − 1

(

1− s(Rt+1, τ
o
t+1)

)

(εR,k + 1)

)

> 0. (3.29)

The signs of the partial derivatives (3.27) and (3.28) hinge on the parameter θ. Households

with a relatively flexible intertemporal consumption, with 0 < θ < 1, will increase their

savings kt+1 to earn a higher old-age consumption. The transfer rate τ ot+1 does not affect

savings kt+1 if θ = 0. Households with inflexible consumption substitution (when θ < 0)

would instead reduce their savings to increase their young-age consumption and balance

with the foreseen increase in their old-age consumption.

The effects of an increase in the transfer rate τ ot+1 have an identical nature to an increase in

real interest rate Rt+1. The effects of an increase in the interest rate Rt+1 could be divided

into substitution effect and income effect (Romer, 2018, p. 80). The substitution effect

encourages the households to reduce their young-age consumption because its relative

cost raises compared to old-age consumption. As a result, the substitution effect reduces

their young-age consumption while their old-age consumption increases. The income effect

increases both young-age and old-age consumption because the households’ lifetime budget

increases.9 These two effects work in opposite directions for the young-age consumption,

and the total effect depends on the value of θ. The substitution effect dominates if 0 <

θ < 1 because this household would save more to increase the relatively cheaper old-age

consumption. On the contrary, the income effect is stronger than the substitution effect for

households who are less willing to substitute (that is, when θ < 0). The subtitution effect

and the income effect work in the same direction for the household‘s old age consumption;

hence, the sign of the partial derivative (3.29) is unambiguous.

9This effect applies only to households who save, which is implicitly assumed in our model with non-
negative kt+1. For borrowers, the income effect decreases both their young-age and old-age consumption.
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3.2 Lump-sum Transfer Scheme

The OLG model for intergenerational social contracts with a lump-sum transfer scheme

is similar to the capital income subsidy scheme. Let there be two successive generations,

generation t (Gt) and generation t + 1 (Gt+1), signing a social contract with a lump-sum

transfer scheme (mt, Tt+1). By committing to this contract, households Gt agree to carry

out mitigation share mt financed from their labor income when they are young. In return,

households Gt will receive a lump-sum transfer Tt+1 when they are old. The lump-sum

transfer is deducted from Gt+1’s labor income. Because we assume zero population growth,

the amount of transfers paid by each household Gt+1 is the same as the amount received

by each household Gt. A positive population growth would reduce the payment paid by

each household Gt+1 because they have a larger population. We illustrate this contract in

Figure 3.

Figure 3: Intergenerational social contracts for lump-sum transfer scheme

3.2.1 The Household

The utility function for the representative household is the same as the utility function

(3.1) under the capital income subsidy scheme. For the budget constraints, we change the

expressions (3.2) and (3.3) into the budget constraints for a lump-sum transfer scheme:

cyt + kt+1 = wt(1−mt)− Tt, (3.30)

and

cot+1 = Rt+1kt+1 + Tt+1. (3.31)

The only difference here is that the transfer is not accounted as a percentage of neither

labor income wt nor capital income Rt+1kt+1. Instead, the transfer Tt to the coexisting
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old generation is deducted from the young households’ disposable income at period t. In

period t + 1, the households receive lump-sum transfer Tt+1. We still make the same as-

sumption that the mitigation effort is determined as a share of labor income wtmt. All

other assumptions from budget identities (3.2) and (3.3) are also applicable to the lump-

sum lifetime budget constraint. We assume that the household is blessed with perfect

foresight, the capital stock is fully-depreciated in each period, and the population is con-

stant. We therefore have the household’s utility maximization problem of (3.1) subject to

(3.30) and (3.31).

3.2.2 The Firm, the Pollution Stock, and Equilibrium

For the firm’s profit maximization problem, we have the same result as in equations (3.12)

and (3.13) for the interest rate and labor income, respectively. The pollution stock and to-

tal factor productivity specifications also follow expressions (3.9) and (3.11), respectively.

Table 2 shows the equilibrium conditions under the social contract with a lump-sum trans-

fer scheme.

Table 2: System of Equations for Lump Sum Transfers

k∗t+1 =
wt(1−mt)− Tt − Tt+1(βRt+1)

1
θ−1

1 + (β
1
θRt+1)

θ
θ−1

(3.32)

cyt = wt(1−mt)− Tt − k∗t+1 (3.33)

cot+1 = Rt+1k
∗
t+1 + Tt+1 (3.34)

wt = (1− α)z(Et−1) [α(kt)
ρ + (1− α)]

1−ρ
ρ (3.35)

Rt+1 = αz(Et)
[

α+ (1− α)(k∗t+1)
−ρ
]
1−ρ
ρ (3.36)

Et = (1− δ)Et−1 + ξkt − γwt−1mt−1 (3.37)

z(Et) = Ae−|Et| (3.38)

The household’s utility maximization problem yields optimal consumption-savings deci-

sions (3.32), (3.33), and (3.34).10 We denote the equilibrium savings as k∗t+1 to differentiate

it from the nonequilibrium savings kt+1.

10See Appendix B.1 for the derivations.
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Figure 4: Effects of Social Contracts with Lump-sum Transfer Scheme

Comparative-static analysis is also required to analyze the effects of the lump-sum social

contract (mt, Tt+1) on the household’s consumption-savings decisions. We show the differ-

ent mechanisms of the effects of the social contract in Figure 4. This figure is identical with

Figure 2 except with a few changes in the notations; therefore, the mechanisms on how the

social contracts affect consumption-savings is identical for both lump-sum transfer scheme

and capital income subsidy scheme. We also derive the partial derivatives for a lump-sum

transfer scheme. Appendix B.2 explains the derivations of the partial derivatives 3.39 to

3.44.

For the effects of the mitigation share mt for the lump-sum transfer scheme, we have the

following partial derivatives:

∂k∗t+1

∂mt
= −

wt

1 + (β
1
θRt+1)

θ
θ−1

[

1 + θ
θ−1εR,k∗

(

1 + 1
θ

Tt+1

k∗t+1Rt+1

)] < 0, (3.39)

∂cyt
∂mt

= −wt −
∂k∗t+1

∂mt
⋚ 0, (3.40)

and
∂cot+1

∂mt
=
∂k∗t+1

∂mt
Rt+1 (εR,k∗ + 1) ⋚ 0. (3.41)

These partial derivatives have similar signs with the partial derivatives for capital income

subsidy scheme. Note that if we impose the same parameters and zero transfers, the partial

derivatives (3.27), (3.28), and (3.29) coincide with (3.39), (3.40), and (3.41), respectively.11

Because the denominator of the expression (3.39) is always positive, the mitigation share’s

effect on savings kt+1 is negative.

11Suppose we impose τyt = Tt = τot+1 = Tt+1 = 0. Then net income would be It = wt. Both partial
derivatives (3.24) and (3.39) reduce to the following expression:

∂kt+1

∂mt

= −
wt

1 + (β
1
θRt+1)

θ

θ−1 + θ
θ−1

εR,k(β
1
θRt+1)

θ

θ−1

.

It is straightforward to see that (3.28) and (3.29) are identical with (3.40) and (3.41), respectively, if they

have the an identical
∂kt+1

∂mt
.
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For this lump-sum case, it has ambiguous effects of mitigation share mt on the young-age

and the old-age consumption. The explanation of such ambiguity is also similar to the

capital income subsidy scheme. Households with lower θ have a stronger consumption

smoothing. Such households are very unwilling to reduce their young-age consumption;

consequently, they greatly reduce their savings. If the reduction in savings is accompanied

by a large increase in interest rate Rt+1 (that is, when |εR,k| is high), the effect of mitigation

share mt on both the young-age consumption cyt and the old-age consumption cot+1 could

be positive.

We also derive the effects of Tt+1 on the optimal consumption-savings:

∂k∗t+1

∂Tt+1
= −

(βRt+1)
1

θ−1

1 + (β
1
θRt+1)

θ
θ−1

[

1 + θ
θ−1εR,k∗

(

1 + 1
θ

Tt+1

k∗t+1Rt+1

)] < 0, (3.42)

∂cyt
∂Tt+1

= −
∂k∗t+1

∂Tt+1
> 0, (3.43)

and
∂cot+1

∂Tt+1
=
∂k∗t+1

∂Tt+1
Rt+1 (εR,k∗ + 1) + 1 > 0. (3.44)

We obtain different signs for the effects of the lump-sum transfer Tt+1 on savings kt+1

and the young age consumption cyt . The denominator in (3.42) is positive, so it has a

negative sign. This effect is unambiguous compared to the partial derivative (3.27) under

the capital income subsidy scheme. The insight here is that the capital income subsidy

scheme incentivizes the households to increase their savings (if the substitution effect

dominates the income effect), while the lump-sum transfer scheme does not. Lump-sum

transfers at period t+1 acts as a substitute for savings. This argument coincides with the

study by Samuelson (1958), where the foreseen lump-sum transfer in the future discourages

savings for intertemporal consumption smoothing because the transfer acts as a substitute

for the households’ savings. The effect of the lump-sum transfer Tt+1 on the households’

young-age consumption cyt mirrrors the partial derivative (3.42), so it has a positive sign.
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4 Results and Discussions

4.1 Existence of Pareto-Improving Social Contracts

Pareto-improving social contracts exist if and only if the contracts improve the welfare

of at least one generation, either Gt or Gt+1, while leaving the other generation’s welfare

constant. The welfare for each generation is represented by the lifetime utility (3.1). Let

Vc
t be the lifetime utility of Gt social contract of capital income subsidy scheme (mt, τ

o
t+1),

and let V l
t be the utility with lump-sum social contract (mt, Tt+1). The superscripts of the

lifetime utilities represent the types of the social contract. Without any social contract,

both the mitigation share and the intergenerational transfers, (mt, τ
o
t+1) and (mt, Tt+1), are

(0, 0). We denote the lifetime utility under no social contract as V0
t . The difference in the

Gt’s welfare between signing and not signing social contracts is defined as ∆Vc
t = Vc

t −V0
t

and ∆V l
t = V l

t−V0
t . The social contract should also be accepted by Gt+1, and we also denote

their lifetime utility gains from signing the contract by ∆Vc
t+1 and ∆V l

t+1. Therefore, the

intergenerational social contract with a capital income subsidy scheme is Pareto-improving

if and only if ∆Vc
t ≥ 0 and ∆Vc

t+1 ≥ 0. Similarly, the Pareto-improving conditions for a

lump-sum transfer social contract are ∆V l
t ≥ 0 and ∆V l

t+1 ≥ 0.

We test the existence of Pareto-improving social contracts by constructing indifference

curves consisting of combinations of a mitigation share and an intergenerational transfer.

Along the curves the agents are indifferent: either signing or not signing the contract. The

indifference curve for Gt is where signing the contract is neither improving nor harming

their welfare, that is, ∆Vc
t = 0 or ∆V l

t = 0. Likewise, the indifference curve for Gt+1

is either ∆Vc
t+1 = 0 or ∆V l

t+1 = 0, depending on which scheme we consider. We then

symbolize the indifference curves:

Ωc ≡ ∆Vc
t = 0 and ψc ≡ ∆Vc

t+1 = 0 for a capital income subsidy scheme;

and

Ωl ≡ ∆V l
t = 0 and ψl ≡ ∆V l

t+1 = 0 for a lump-sum transfer scheme.

4.1.1 Cobb-Douglas Case

We start our analysis by designating the intertemporal substitution parameter θ and the

factors of production substitution parameter ρ to be equal to 0. We utilize limiting argu-

ments because imposing the parameter θ = ρ = 0 into the systems of equations in Table

1 and Table 2 yields divisions by zero. The limiting arguments yield a logarithmic utility
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function (which is essentially the same as a Cobb-Douglas utility function if we take the

natural logarithm of it) and a Cobb-Douglas production function. We put the details of

the limiting arguments and the derivations under the Cobb-Douglas case in Appendix A.4

for the capital income subsidy scheme and in Appendix B.3 for the lump-sum transfer

scheme.

Table 3: Main Parameter Values

Parameters Description Value

t Starting period of social contract 0
α Weight of capital 1/3
β Consumption discount factor 0.7
θ Consumption substitutabillity parameter 0
ρ Factors of production substitutabillity parameter 0
δ Decay rate of the stock pollution 0
γ Mitigation effort coefficient 1
ξ Pollution rate of capital stock 1
E−1 Pollution stock in the previous period 0
A Coefficient for the total productivity factor z 3
k0 Capital per capita at period 0 2
m−1 Mitigation share from the previous period contract 0
me

1 Foreseen mitigation share for the next period contract 0
τ o0 Transfer rate for the previous period contract 0
τ o,e2 Foreseen capital income subsidy rate for the next period contract 0
T0 Lump-sum transfer for the previous period contract 0
T e
2 Foreseen lump-sum transfer for the next period contract 0

Table 3 presents the parameters and starting values for the Cobb-Douglas case. The start-

ing period of the social contract t = 0 means that the contract is between G0 and G1. We

follow Dao et al. (2017) for the values of parameters α, β, δ, γ, and ξ. We assign E−1 = 0

and A = 3 to avoid a very small value of total productivity factor z(Et) in period 0. The

capital per capita k0 = 2 is our starting guess, and we will try to vary it as we proceed with

our analysis. The foreseen social contract mitigation share me
1, the transfer rate of capital

income subsidy τ o,e2 , and the lump-sum transfer T e
2 represent the succeeding contract. We

remind that the system of equations in Table 1 and Table 2 relate to Gt. The system of

equations for Gt+1 is similar except that the equations are shifted by one period.12 We

assume there are no preceding and succeeding social contracts, both for capital income

12For example, the young-age consumption for Gt+1 under the capital income subsidy scheme is the
equation (3.15) shifted forward by one period:

c
y
t+1 =

(

1− s(Re
t+2, τ

o,e
t+2)

)

It+1(1−m
e
t+1).
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subsidy and lump-sum scheme, so there is no mitigations nor transfers in the previous and

the next period.
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Figure 5: Capital Income Subsidy Scheme
with θ = 0, ρ = 0, and k0 = 2

We construct indifference curves for

capital income subsidy scheme in

Figure 5. The solid-line curve Ωc

represents the intergenerational so-

cial contracts under which the house-

holds Gt is indifferent between ac-

cepting and not accepting the con-

tract. Likewise, the dashed-line

curve ψc represents the combinations

of contracts for households Gt+1 to

be indifferent. The area above

Ωc illustrates the sets of contracts

(mt, τ
o
t+1) where it improves the wel-

fare for households Gt. For house-

holds Gt+1, the welfare-improving set

of contracts lies in the area under the

curve ψc. Pareto-improving social contracts exist if there exist an area where the dashed-

line curve is above the solid-line curve. We call this area as a Pareto-improving set of

social contracts Pc.13 Intuitively, households Gt gains more from the contract if they re-

ceive a higher capital income subsidy τ ot+1 while holding the mitigation share mt constant.

Conversely, Gt+1 would be better-off with a lower transfer rate τ ot+1 while holding the mit-

igation share mt constant. Based on Figure 5, we can infer that a Pareto-improving set of

social contracts exist, denoted by the shaded area. Households Gt and Gt+1 could bargain

to determine an appropriate contract (m∗
t , τ

o∗
t+1) inside the Pc area.

We also analyze the existence of Pc with a lower value of k0. Dao et al. (2017) argue that

Pc ceases to exist if the income is below a certain income threshold. Because we assume

the exogenous variable is capital per capita kt, we derive the threshold for capital per

capita:

k̂t =

(

1

(1− α)z(Et−1) (1− τyt )

α(1 + αβ)(1 + β)2

(1− α)(β + γ + γβ)β2

)

1
α

. (4.1)

The details of the threshold derivations are in Appendix A.4, particularly on expressions

13The explanation of why such an area is Pareto-improving has been explained by Dao et al. (2017). We
reproduce their derivations in the Appendix A.4, particularly see expressions (A.46) and (A.47) regarding
the Pareto-improvement conditions.
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(A.52). Using the parameters shown in Table 3, the capital per capita threshold is ap-

proximately k̂0 ≈ 0.435.
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Figure 6: Capital Income Subsidy Scheme
with θ = 0, ρ = 0, and k0 = 0.4

Figure 6 displays the indifference

curves with a capital per capita

below the threshold. The curve

ψc is rotated downward, and this

causes the area Pc to be nonexis-

tent. With our assumption that

the mitigation effort is carried out

as a share of labor income wt,

we can infer that the mitigation

effort becomes higher with higher

labor income. The labor in-

come is also positively affected by

the initial capital per capita k0.

With higher k0, households Gt+1

would accept a contract with the

same mitigation share mt at a

higher transfer rate τ ot+1, and therefore rotates the curve ψc counterclockwise.14
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Figure 7: Lump-sum Transfer Scheme
with θ = 0, ρ = 0, and k0 = 0.4

Next, we test the existence of Pareto-

improving social contracts for a

lump-sum transfer scheme. Figure

7 has the same parameter values as

in Figure 6. This lump-sum trans-

fer scheme yields a Pareto-improving

sets of social contracts, where we de-

note it by P l, even though the ini-

tial capital per capita k0 is set to

be below the threshold k̂t. We can-

not derive the threshold k̂t for the

lump-sum scheme because its system

of equations has nonlinear simulta-

neous equations for kt+1 and Rt+1.

Instead, we simulate it with lower

values of k0 and search when the

Pareto-improving sets of contracts are nonexistent P l = ∅.

14See the last expression of (A.47) to see the relationship between It and ψc mathematically.
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Figure 8: Lump-sum Transfer Scheme
with θ = 0, ρ = 0, and k0 = 0.2

We present this case in Figure 8

with k0 = 0.2. We could stipu-

late that imposing this calibration,

lump-sum transfer scheme requires

lower threshold of k0 compared to

capital income subsidy scheme. This

seems to be one of the advantages

of lump-sum transfer scheme. Com-

paring Figure 7 and Figure 8, the

lower value of k0 rotates the dashed-

line downward while rotates the solid

line upward. The lump-sum transfer

scheme has this effect because the in-

difference curve for households Gt is

affected by the value of the savings.

We could refer to the comparative-static analysis, particularly expressions (3.27) and

(3.42). Under Cobb-Douglas Case (θ = 0), an increase in capital subsidy τ ot+1 does not

change the savings kt+1, whereas an increase in a lump-sum transfer Tt+1 discourages

savings. A reduction in savings has two advantages: it reduces the externality caused by

capital accumulation, and it reduces a dynamic inefficiency when the net marginal return

on capital is lower than the population growth rate. The first advantage originates from

our model specification regarding the pollution stock equation (3.9). Savings increase

capital accumulation which generates negative externality; therefore, a decrease in sav-

ings also decreases the externality. The second advantage is related to the golden rule of

savings, in which steady-state consumption is maximized when the net marginal return

on capital is equal to the population growth rate. We denote interest rate Rt = 1 + rt.

Dynamic efficiency occurs if rt equals population growth rate (Heijdra, 2009, p. 905-906).

In our model, the population growth rate is zero; hence, the dynamic efficiency is when

Rt+1 = 1. Households Gt oversave when Rt+1 < 1 and undersave if Rt+1 > 1, indicating

a dynamic inefficiency. The lump-sum transfer scheme is therefore welfare-improving for

households Gt if they oversave, that is, when the parameterization yields a low interest

rate Rt+1 (before introducing a social contract).
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(a) Capital Externality Simulations
with θ = 0, ρ = 0, Rt+1 = 0.13,
τot+1 = 0.01, and Tt+1 = 0.005

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(b) Interest Rate Simulations
with θ = 0, ρ = 0, ξ = 1,

τot+1 = 0.01, and Tt+1 = 0.005

Figure 9: Scheme Comparisons with Different Calibrations

We plot indifference curves for households Gt along which their utility is constant, given the

combinations of transfers (either lump-sum Tt+1 or capital subsidy τ
o
t+1) and the mitigation

shares mt. We construct the indifference curves in Figure 9 by varying pollution rate ξ

and interest rate Rt+1. The transfers are chosen such that neither scheme is very superior

compared to the other scheme due to a very high transfer. A Higher mitigation share mt

in Figure 9 means that households Gt are willing to perform a higher mitigations given

the same transfers. Therefore, a higher mitigation share mt may have a larger Pareto-

improving set of social contracts (P-set).

Figure 9a confirms the first advantage of a lump-sum transfer scheme: the reduction of the

capital accumulation externality. This advantage is more prominent as the pollution rate ξ

increases. The lump-sum transfer scheme loses its superiority if discouraging savings is less

beneficial, that is, when the pollution rate is low. Reducing savings is also unfavourable if

the interest rate Rt+1 is high compared to the population growth rate. This argument is

supported by Figure 9b. Because we employ endogenous interest rate, we construct Figure

9b by simulating various levels of capital per capita k0. The lump-sum transfer scheme is

superior with a low interest rate Rt+1. As interest rates increase, the mitigation share mt

under lump-sum scheme becomes lower than the capital income subsidy scheme.

Figure 10 shows that the lump-sum transfer scheme has a higher Pareto-improving con-

tracts feasibility under a high pollution rate, while Figure 11 shows that the capital income

subsidy scheme is superior under a low pollution rate. The lump-sum transfer and the
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capital income subsidy scheme have different vertical axes. Nevertheless, we can compare

their P-set by examining the mitigation share mt where the the two curves, Ω and ψ,

cross. This point implies the highest possible mitigation share based on the P-set. The

lump-sum transfer scheme has a higher possible mitigation share than the capital income

subsidy scheme if the pollution rate is high. This conforms with our argument that a larger

decrease in savings, caused by choosing a lump-sum transfer scheme in a Cobb-Douglas

case, is more advantageous for a high capital accumulation externality.
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(a) Capital Income Subsidy Scheme
with θ = 0, ρ = 0, k0 = 2, and ξ = 1.1
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(b) Lump-sum Transfer Scheme
with θ = 0, ρ = 0, k0 = 2, and ξ = 1.1

Figure 10: Scheme Comparison with a High Pollution Rate
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(a) Capital Income Subsidy Scheme
with θ = 0, ρ = 0, k0 = 2, and ξ = 0.05
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with θ = 0, ρ = 0, k0 = 2, and ξ = 0.05

Figure 11: Scheme Comparison with a Low Pollution Rate
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We also test the existence of P-set for different interest rates Rt+1. We calibrate the

parameter values such that it yields both a high and a low interest rate before introducing

a social contract, as shown in Figure 12 and Figure 13, respectively. The results of the P-

set areas show that the lump-sum transfer scheme is superior if such a scheme is introduced

in a dynamically inefficient economy with Rt+1 < 1. On the contrary, the capital income

subsidy scheme has a higher mitigation share in the P-set if the interest rate is high.
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(a) Capital Income Subsidy Scheme
with θ = 0, ρ = 0, k0 = 0.5, A = 6, ξ = 0.5, and

Rt+1 = 1.3
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(b) Lump-sum Transfer Scheme
with θ = 0, ρ = 0, k0 = 0.5, A = 6, ξ = 0.5, and

Rt+1 = 1.3

Figure 12: Scheme Comparison with a High Interest Rate Rt+1
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(a) Capital Income Subsidy Scheme
with θ = 0, ρ = 0, k0 = 2, A = 3, ξ = 0.5, and

Rt+1 = 0.359
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(b) Lump-sum Transfer Scheme
with θ = 0, ρ = 0, k0 = 2, A = 3, ξ = 0.5, and

Rt+1 = 0.359

Figure 13: Scheme Comparison with a Low Interest Rate Rt+1
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4.1.2 Intertemporal Consumption Substitutability

In this section, we evaluate the indifference curves Ω and ψ with different degrees of

intertemporal consumption substitutability θ. To test the existence of Pareto-improving

social contracts P, we employ the same approach as in the Cobb-Douglas case section 4.1.1.

The area above Ω’s curve represents welfare-improving sets contracts for households Gt,

while the area below the ψ’s curve represents welfare-improving contracts for households

Gt+1. The area between the curves characterizes welfare-improving contracts for both Gt

and Gt+1: proving an existence of P. Main parameters in Table 3 is still chosen as the

base values. When we use a different parameterization, we put the changed parameters

below the figure.
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(a) Easy substitution with θ = 0.1, ρ = 0,
k0 = 2, A = 3, ξ = 1, and Rt+1 = 0.147
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(b) Difficult substitution with θ = −0.1, ρ = 0,
k0 = 2, A = 3, ξ = 1, and Rt+1 = 0.121

Figure 14: Capital Income Subsidy Scheme with Different Consumption Substitutabilities

Let us test the existence of Pc, Pareto-improving contracts for capital income subsidy

scheme. The left side of Figure 14 represents an easy intertemporal consumption substitu-

tion (relative to the logarithmic utility case), whereas the right-side represents a difficult

intertemporal consumption substitution. A smaller value of the parameter θ improves the

feasibility of intergenerational social contracts. The case with easy substitution barely

has an area of Pc, while the difficult substitution case has a relatively wide area of Pc.

In comparison with Figure 5 which has a highest possible mitigation share in the Pc-set

around 0.25, Figure 14 has a higher value around 0.38. This conjecture also holds with

different values of parameter ρ.15 We also show the endogenous interest rate Rt+1 under

no social contract below each figure. The interest rate differs because a different parameter

15See Appendix C.1 for the cases with different factors of production substitution parameter ρ.
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θ yields a different interest rate.

To understand the effects of parameter θ mathematically, we refer back to the comparative-

static analysis equations (3.24) and (3.27). For a low value of θ, households are more

inequality averse regarding their intertemporal consumption. For these households, an

increase in mitigation share mt greatly reduce their savings, by more than for households

who care less of the inequality in their intertemporal consumption. An increase in the

capital income subsidy τ ot+1 also lowers savings when θ < 0, while an increase in τ ot+1 raises

savings if θ > 0. A greater reduction in savings is welfare-improving with a low interest rate

(relative to population growth rate) and a high pollution rate. The parameters choosen

for constructing Figure 14 results in a low interest rate before any contract is introduced.

We also impose the pollution rate ξ = 1 for Figure 14, which is relatively high.
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(a) Changes in savings with ρ = 0, and τot+1 = 0.01
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(b) Mitigation share with ρ = 0 and τot+1 = 0.01

Figure 15: Intertemporal Consumption Substitutability Simulations for Capital Income Subsidy Scheme

We present the dynamics of the intertemporal consumption substitutability θ due to an

initiation of a capital subsidy transfer τ ot+1 in Figure 15. The left side of the figure

illustrates how the households change their savings if they expect a capital subsidy τ ot+1.

This figure agrees with our mathematical interpretations that households Gt reduce their

savings with a low value of θ. The right-side of Figure 15 illustrates indifference curves

reflecting the maximum amount of mitigation share mt for the households Gt provided

that they will receive a certain capital subsidy τ ot+1. Figure 15b shows that a smaller θ

increases the Pareto-improving contracts Pc feasibility.
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Figure 16: Intertemporal Substitutability Simulations
for Capital Income Subsidy Scheme

with ρ = 0, ξ = 0.05, A = 6 and k0 = 0.5

However, discouraging savings is

beneficial when the interest rate

Rt+1 is low and the pollution rate

ξ is high. This is what Figure 16

tells us. Figure 16 is a recalibration

of Figure 15b with a lower pollution

rate ξ and a relatively higher interest

rate (by imposing a lower initial cap-

ital per capita k0). We also adjust

the productivity coefficient A such

that the total production Yt remains

stable. Under this parameterization,

the intertemporal consumption sub-

stitutability θ has a positive relation-

ship with the mitigation share mt.

This implies that, in contrast to Fig-

ure 15b, smaller θ may decrease the Pareto-improving contracts Pc feasibility.
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(a) Easy substitution with θ = 0.1, ρ = 0,
k0 = 0.1, A = 8, Rt+1 = 3.1, and ξ = 0.01
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(b) Difficult substitution with θ = −1, ρ = 0,
k0 = 0.1, A = 8, Rt+1 = 2.6, and ξ = 0.01

Figure 17: Capital Income Subsidy Scheme with Different Consumption Substitutabilities

We test the existence of Pareto-improving Pc set of social contracts with a low pollution

rate ξ and a high interest rate Rt+1 in Figure 17. This figure supports our reasoning that

a lower θ shrinks the Pc-set if lowering savings is undesirable, that is, when the capital

accumulation externality is low and the interest rate is high.
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Figure 18: Intertemporal Substitutability Simulations
for both Schemes

with ρ = 0, ξ = 1, k0 = 2, A = 3,
τot+1 = 0.01, and Tt+1 = 0.001

The discussions regarding the fea-

sibility of Pc-set carry over to the

P l-set for the lump-sum transfer

scheme. The key factor here is to ex-

amine whether a reduction in savings

is beneficial. We have explained in

the comparative-static analysis the

difference between the effect of lump-

sum transfers Tt+1 and capital sub-

sidy rate τ ot+1. An expected lump-

sum transfer Tt+1 discourages sav-

ings, regardless of the value of the

intertemporal consumption substi-

tutability θ. An increase in the cap-

ital subsidy rate τ ot+1, on the other

hand, reduces savings if only if θ < 0.

We show this difference in Figure 18.

Lowering θ yields a greater reduction in savings for the capital income subsidy scheme than

for the lump-sum transfer scheme.
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(a) Easy substitution with θ = 0.1, ρ = 0,
k0 = 2, A = 3, ξ = 1, and Rt+1 = 0.147

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(b) Difficult substitution with θ = −0.1, ρ = 0,
k0 = 2, A = 3, ξ = 1, and Rt+1 = 0.121

Figure 19: Lump-sum Transfer Scheme with Different Consumption Substitutabilities
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(a) Easy substitution with θ = 0.1, ρ = 0,
k0 = 0.1, A = 8, Rt+1 = 3.1, and ξ = 0.01
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(b) Difficult substitution with θ = −1, ρ = 0,
k0 = 0.1, A = 8, Rt+1 = 2.6, and ξ = 0.01

Figure 20: Lump-sum Transfer Scheme with Different Consumption Substitutabilities

We proceed to analyze the existence of Pareto-improving contracts P l with different in-

tertemporal consumption substitutabilities. Figure 19 is calibrated for the case when

reducing savings is favorable. In Figure 20, we impose the same parameter values as in

Figure 17, that is, when a decrease in savings is less beneficial. Overall, we have similar

results as in the capital income subsidy scheme: (1) lowering the intertemporal consump-

tion substitutability θ enlarges the P-set with a low interest rate Rt+1 and a high pollution

rate ξ; but, (2) lowering the intertemporal elasticity of substitution θ shrinks the P-set

with a high interest rate Rt+1 and a low the pollution rate ξ. In the case with a high

interest rate and a high pollution rate, the total effect (whether the P-set area shrinks or

expands) depends on which effects dominates. Reducing savings decrease a high negative

externality if the pollution rate is high, but it introduces dynamic inefficiency to the econ-

omy because of the high interest rate. The contradictory effects are also true for a low

interest rate and a low pollution rate.

The intuition behind those results is as follows. Establishing a social contract changes

consumption-savings decisions. Households who are highly reluctant to substitute their

intertemporal consumption will greatly reduce their savings to dampen the changes. This

savings reduction is more beneficial for the households provided that the economy initially

has a low interest rate (relative to the population growth rate) and a high pollution rate.

This is because the reduction in savings will increase the interest rate, so the households

receive a higher net return due to the capital crowding-out. A decrease in savings also re-

duce the capital accumulation externality, which is welfare-improving for the households.
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Therefore, Pareto-improving social contracts are more feasible to be established for house-

holds who are stricter on their intertemporal consumption provided that reducing savings

is beneficial.

4.2 Capital Income Subsidy Versus Lump-Sum Transfer Scheme

Our discussions so far have suggested that the pros and cons of the two schemes hinge on

how the schemes affect savings (and by how much). The assumption about the pollution

rate ξ and the calibrations of interest rate Rt+1 then determines which shceme is better in

terms of its Pareto-improving feasibility. In the Cobb-Douglas case, we have shown that

a capital income subsidy scheme yields a less reduction in savings.16 Therefore, under the

Cobb-Douglas case, lump-sum transfer is superior if the pollution rate ξ is high and the

interest rate Rt+1 is low.

We analyze the existence of Pareto-improving social contracts P with different intertem-

poral consumption substitutabilities θ. We are particularly interested in how the different

favorability in savings reduction affects P-set for both capital income subsidy scheme and

lump-sum transfer scheme. First, let us consider the case of an easy intertemporal substi-

tution case, a high pollution rate ξ, and a low interest rate Rt+1. This case is illustrated

in Figure 21.
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(a) Capital income subsidy scheme
with θ = 0.1, ρ = 0, A = 3,

ξ = 1.1, Rt+1 = 0.12 , and k0 = 2
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(b) Lump-sum transfer scheme
with θ = 0.1, ρ = 0, A = 3,

ξ = 1.1, Rt+1 = 0.12, and k0 = 2

Figure 21: Comparison of Schemes when Savings Reduction is Beneficial

16See Figure 18 or the comparative-static analysis. An increase in the capital subsidy rate τot+1 does not
affect savings when θ = 0, while a lump-sum transfer Tt+1 does.
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The P-set for lump-sum transfer scheme is larger than the capital income subsidy scheme in

Figure 21 because the parameters are choosen such that discouraging savings is beneficial.

We have explained in the comparative-static analysis that a capital subsidy τ ot+1 increase

households’ savings when θ is positive. Lump sum transfer scheme yield a higher decrease

savings, so lump-sum transfer is superior under this case.
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(a) Capital income subsidy scheme
with θ = 0.1, ρ = 0, A = 6,

ξ = 0.05, Rt+1 = 2 , and k0 = 0.2
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(b) Lump-sum transfer scheme
with θ = 0.1, ρ = 0, A = 6,

ξ = 0.05, Rt+1 = 2, and k0 = 0.2

Figure 22: Comparison of Schemes when Savings Reduction is Less Beneficial

Next, we consider the case when reducing savings is unfavorable by imposing a lower

pollution rate and calibrating a higher endogenous interest rate. Figure 22 presents this

case. The lump-sum transfer scheme seems to lose its superiority because now it has a

similar maximum mitigation share in its P-set (around 0.025) compared to the capital

income subsidy scheme. These findings support our argument that the initial conditions

of the economy influence whether a decrease in savings caused by the social contracts is

beneficial.
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(a) Capital income subsidy scheme
with θ = −1, ρ = 0, A = 1.5,

ξ = 1, Rt+1 = 0.25 , and k0 = 1
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(b) Lump-sum transfer scheme
with θ = −1, ρ = 0, A = 1.5,

ξ = 1, Rt+1 = 0.25, and k0 = 1

Figure 23: Comparison of Schemes when Savings Reduction is Beneficial
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(a) Capital income subsidy scheme
with θ = −1, ρ = 0, A = 8,

ξ = 0.01, Rt+1 = 3.1 , and k0 = 0.1
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(b) Lump-sum transfer scheme
with θ = −1, ρ = 0, A = 8,

ξ = 0.01, Rt+1 = 3.1, and k0 = 0.1

Figure 24: Comparison of Schemes when Savings Reduction is Less Beneficial

We also graph the P-set for a difficult substitution case. Both a favorable and an unfavor-

able initial conditions for a decrease in savings (relatively based on the interest rate Rt+1

and pollution rate ξ) is presented in Figure 23 and Figure 24, respectively. The results are

similar to the easy substitution case when θ is positive. The lump-sum transfer scheme is
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superior when a decrease in savings is favorable (Figure 23b), but it is not the case when

a decrease in savings is unfavorable (Figure 24b). To understand why we have similar

results with the easy substitution case, we compare the degree of changes in savings for

both schemes, with the current calibrations.
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Figure 25: Intertemporal Substitutability Simulations
for both Schemes

with ρ = 0, ξ = 1, k0 = 1, A = 1.5,
τot+1 = 0.01, and Tt+1 = 0.001

We recalibrate Figure 18 using the

parameter values of Figure 23. Fig-

ure 25 shows that with the param-

eter θ = −1, lump-sum transfer

scheme yields a stronger reduction

in savings compared to the capital

income subsidy scheme. Therefore,

the superiority of lump-sum trans-

fer we found in Figure 23a is due to

a greater decrease in savings. How-

ever, this advantage of a greater sav-

ings reduction diminishes if we as-

sign a lower pollution rate ξ and a

higher interest rate Rt+1, as has been

demonstrated in Figure 24. Lump-

sum transfer scheme could be in-

ferior to a capital income subsidy

scheme if savings reduction yields

unfavorable welfare impact. We have shown this case in Figure 11 and 12 for the cal-

ibrations with a low pollution rate ξ and a high interest rate Rt+1, respectively.

These findings with varying degree of intertemporal substitution parameter θ is consis-

tent with the findings with the Cobb-Douglas case (θ = 0). The comparison of the P-set

between the lump-sum transfer scheme and the capital income subsidy scheme is largely

determined by the capital accumulation externality and the interest rate. Intuitively, to

determine which scheme has a higher Pareto-improving set of contracts, we need to as-

sess their impacts on savings. The scheme that yields a greater reduction in savings has

more Pareto-improving feasibility if a decrease in savings is beneficial for the households’

welfare—high capital accumulation externality and low interest rate. Conversely, a reduc-

tion of savings may have an adverse impact on the households’ welfare. If so, the scheme

with a higher savings reduction would not be superior (or even become inferior if even a

small decrease in savings greatly reduces the households’ welfare).
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5 Conclusions

The gap between the costs and benefits of climate mitigation efforts raises the difficulties

in implementing climate policy if each generation is selfish. Nevertheless, existing studies

argue that it is possible for each generation to mutually gain from climate mitigation ef-

forts provided that the policy is combined with intergenerational transfers. Such a policy

that benefits all generations is called a Pareto-improving policy. This thesis employs a

two-period overlapping generations (OLG) model to test the existence of Pareto-improving

social contracts. In this model, the households in each generation live for two periods:

they work in one period and then retire in the next period. The social contracts consist

of pollution mitigation performed by the present-young generation and a pay-as-you-go

(PAYG) pension transfer from the future-young generation. Although the future genera-

tion needs to pay the tranfers, they benefit from the mitigation carried out by the previous

generation. Signing the social contracts by these two successive generations may improve

the welfare of both generations.

We have tested the existence of Pareto-improving social contracts under different schemes:

the capital income subsidy scheme and the lump-sum transfer scheme. We also have

extended the OLG model specification by Dao et al. (2017) with a different levels of

consumption substitutability between the young-age and the old-age of consumption. We

have shown that the Pareto-improving feasibility of initiating a social contract depends on

whether reducing savings is beneficial for the households. A decrease in savings is more

favorable if the externality from capital accumulation is high, and if the interest rate is low

(compared to the population growth rate). Intuitively, reducing savings (which implies

lower capital investments) also reduces the capital externality, and therefore it is more

beneficial if the externality is high. If the economy has a low interest rate, a decrease in

savings will increase the interest rate, so the households will receive a higher return from

the crowding-out effect.

We have found that a lower degree of intertemporal consumption substitutability raises

the Pareto-improving contract feasibility if reducing savings is advantageous. A lower

degree of intertemporal substitution implies a greater degree of consumption smoothing by

households. Signing a social contract changes the households’ intertemporal consumption,

that is, decreasing their young-age consumption budget while increasing their old-age

consumption budget. Households with a lower degree of consumption substitutability will

reduce their savings greatly to prevent such changes in their intertemporal consumption.

Therefore, the greater reduction in savings increases the feasibility of Pareto-improving

social contracts if the reducing savings is beneficial.

The arguments regarding the benefits of savings reduction are also related to the compar-
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ison of the Pareto-improving feasibility between the transfer schemes. We have demon-

strated that a lump-sum transfer scheme is superior if it yields a stronger savings reduction

and if discouraging savings is beneficial. The lump-sum transfer scheme discourages sav-

ings more than the capital income subsidy scheme when the intertemporal consumption

substitutability is high. Households who are willing to substitute their intertemporal con-

sumption tend to increase their savings to gain more from a capital subsidy, whereas this

is not the case for a lump-sum transfer.

This thesis has several limitations which could be improved for future research. First, we

have assumed a constant population. Population growth rates may affect the feasibility

of Pareto-improving social contracts since it affects the benefits of discouraging savings.

Second, we have not addressed the commitment concerns. Because the intergenerational

social contract typically involves an unborn generation, this generation may refuse to pay

the transfers even if the previous generation has fulfilled the mitigation efforts. Third,

the comparison between the two schemes that we have conducted relies on the highest

mitigation share of the Pareto-improving set of social contracts. A more proper welfare

analysis between the two schemes should be employed instead. Nevertheless, this thesis

contributes to the literature related to intergenerational transfers. We have shown the

importance of evaluating the advantage of discouraging savings in the initial economic

conditions, which influence the feasibility of Pareto-improving social contracts.
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Appendix

A Capital Income Subsidy

A.1 Households Utility Maximization

max
c
y
t ,kt+1,c

o
t+1

Vt =
(cyt )

θ

θ
+ β

(cot+1)
θ

θ

subject to

cyt + kt+1 = It(1−mt)

cot+1 = Rt+1kt+1(1 + τ ot+1)

(A.1)

Here, we can write the Lagrangian function:

L =
(cyt )

θ

θ
+ β

(cot+1)
θ

θ
+ λ1(c

y
t + kt+1 − It(1−mt)) + λ2(c

o
t+1 −Rt+1kt+1(1 + τ ot+1))

The first order conditions:

∂L

cyt
= (cyt )

θ−1 + λ1 = 0

∂L

cot+1

= β(cot+1)
θ−1 + λ2 = 0

∂L

kt+1
= λ1 − λ2Rt+1(1 + τ ot+1) = 0

∂L

λ1
= cyt + kt+1 − It(1−mt) = 0

∂L

λ2
= cot+1 −Rt+1kt+1(1 + τ ot+1) = 0

(A.2)

The division between the first and the second partial derivatives of (A.2) result in the ratio

λ1
λ2

= 1
β

(

c
y
t

cot+1

)θ−1
. The third partial derivative results in the ratio λ1

λ2
= Rt+1(1 + τ ot+1).

Equating them will yield the equations:

1

β

(

cyt
cot+1

)θ−1

= Rt+1(1 + τ ot+1) (A.3)

from the fourth and the fifth partial derivatives in (A.2), we have the result:

It(1−mt)− kt+1

Rt+1kt+1(1 + τ ot+1)
= [βRt+1(1 + τ ot+1)]

1
θ−1 (A.4)
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which could be solved for kt+1:

It(1−mt)− kt+1 = kt+1β
1

θ−1 [Rt+1(1 + τ ot+1)]
θ

θ−1

kt+1 = It(1−mt)

[

1

1 + β
1

θ−1 [Rt+1(1 + τ ot+1)]
θ

θ−1

]

(A.5)

Which refer to equation (3.4) for the optimal saving decision. substituting kt+1 into the

budget constraints, we have the optimal consumption decision:

cyt = It(1−mt)

[

1−
1

1 + β
1

θ−1 [Rt+1(1 + τ ot+1)]
θ

θ−1

]

(A.6)

and

cot+1 = It(1−mt)Rt+1(1 + τ ot+1)

[

1

1 + β
1

θ−1 [Rt+1(1 + τ ot+1)]
θ

θ−1

]

(A.7)

which refer to (3.5) and (3.6) respectively.

A.2 Profit Maximization

The maximization problem is as follows:

max
Kt,Lt

Π = ptYt −RtKt − wtLt (A.8)

where pt is price at period t, we also normalize it to one. Yt is the CES production function.

Yt = z(Et−1)[α(Kt)
ρ + (1− α)(Lt)

ρ]
1
ρ (A.9)

Rt is the rate of return of capital, and wt is the wage rate at time t.

the first order conditions:

∂Π

∂Kt
= αz(Et−1)(Kt)

ρ−1[α(Kt)
ρ + (1− α)(Lt)

ρ]
1−ρ
ρ −Rt = 0

so

Rt = αz(Et−1)

[

α+ (1− α)

(

Lt

Kt

)ρ]
1−ρ
ρ

We could write it in intensive form:

Rt = αz(Et−1)
[

α+ (1− α)(kt)
−ρ
]
1−ρ
ρ (A.10)
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for the labor demand, we have:

∂Π

∂Lt
= (1− α)z(Et−1)(Lt)

ρ−1[α(K)ρt + (1− α)(Lt)
ρ]

1−ρ
ρ − wt = 0

or, when written in intensive form, we have:

wt = (1− α)z(Et−1) [α(kt)
ρ + (1− α)]

1−ρ
ρ (A.11)

It is also useful to determine the ratio of Rt and wt to eliminate most of the complexities

in the model:
α

1− α

(

Kt

Lt

)ρ−1

=
Rt

wt

or, when written in intensive form:

(kt)
ρ−1 =

1− α

α

Rt

wt
(A.12)

A.3 Comparative-Static Analysis

We derive the partial derivatives of kt+1 w.r.t mt:

kt+1 = s(Rt+1, τ
o
t+1)It(1−mt)

∂kt+1

∂mt
=
∂s(Rt+1, τ

o
t+1)

∂mt
It(1−mt)− Its(Rt+1, τ

o
t+1)

∂kt+1

∂mt
=
∂s(Rt+1, τ

o
t+1)

∂Rt+1

∂Rt+1

∂kt+1

∂kt+1

∂mt
It(1−mt)− Its(Rt+1, τ

o
t+1)

∂kt+1

∂mt
= −

Its(Rt+1, τ
o
t+1)

(

1−
∂s(Rt+1,τ

o
t+1)

∂Rt+1

∂Rt+1

∂kt+1
It(1−mt)

) .

(A.13)

The partial derivative of savings rate w.r.t. Rt+1 is

∂s(Rt+1, τ
o
t+1)

∂Rt+1
=

θ

θ − 1

[s(Rt+1, τ
o
t+1)

2 − s(Rt+1, τ
o
t+1)]

Rt+1
,

43



and substituting It(1−mt) =
kt+1

s(Rt+1,τ
o
t+1)

, we have the following equations:

∂kt+1

∂mt
= −

Its(Rt+1, τ
o
t+1)

(

1− θ
θ−1

∂Rt+1

∂kt+1

[s(Rt+1,τ
o
t+1)

2−s(Rt+1,τ
o
t+1)]

Rt+1

kt+1

s(Rt+1,τ
o
t+1)

)

∂kt+1

∂mt
= −

Its(Rt+1, τ
o
t+1)

(

1− θ
θ−1

∂Rt+1

∂kt+1

kt+1

Rt+1
(s(Rt+1, τ ot+1)− 1)

)

∂kt+1

∂mt
= −

Its(Rt+1, τ
o
t+1)

(

1 + θ
θ−1εR,k

(

1− s(Rt+1, τ ot+1)
)

) .

(A.14)

The last expression corresponds to equation (3.24). For the effects of mt on consumption

cyt :

cyt = It(1−mt)− kt+1

∂cyt
∂mt

= −It −
∂kt+1

∂mt

(A.15)

The last expression refers to (3.25). For the effect on cot+1 :

cot+1 = Rt+1kt+1(1 + τ ot+1)

∂cot+1

∂mt
=

(

∂Rt+1

∂mt
kt+1 +Rt+1

∂kt+1

∂mt

)

(1 + τ ot+1)

∂cot+1

∂mt
= Rt+1(1 + τ ot+1)

(

∂Rt+1

∂kt+1

∂kt+1

∂mt

kt+1

Rt+1
+
∂kt+1

∂mt

)

∂cot+1

∂mt
= Rt+1(1 + τ ot+1)

∂kt+1

∂mt

(

∂Rt+1

∂kt+1

kt+1

Rt+1
+ 1

)

∂cot+1

∂mt
=
∂kt+1

∂mt
(εR,k + 1)Rt+1(1 + τ ot+1)

(A.16)

The last expression corresponds to (3.26). Next, we derive the partial derivative of kt+1

w.r.t. τ ot+1:

kt+1 = s(Rt+1, τ
o
t+1)It(1−mt)

∂kt+1

∂τ ot+1

=
∂s(Rt+1, τ

o
t+1)

∂τ ot+1

It(1−mt)
(A.17)
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The partial derivative of savings rate w.r.t. τ ot+1:

s(Rt+1, τ
o
t+1) =

(

1

1 + [β
1
θRt+1(1 + τ ot+1)]

θ
θ−1

)

∂s(Rt+1, τ
o
t+1)

∂τ ot+1

= −

(

1

1 + [β
1
θRt+1(1 + τ ot+1)]

θ
θ−1

)2
θ

θ − 1

[β
1
θRt+1(1 + τ ot+1)]

θ
θ−1

(1 + τ ot+1)

∂s(Rt+1, τ
o
t+1)

∂τ ot+1

= −
θ

θ − 1
s(Rt+1, τ

o
t+1)

2

(

1− s(Rt+1, τ
o
t+1)

s(Rt+1, τ ot+1)

)

1

(1 + τ ot+1)

∂s(Rt+1, τ
o
t+1)

∂τ ot+1

= −
θ

θ − 1
s(Rt+1, τ

o
t+1)

(

1− s(Rt+1, τ
o
t+1)

(1 + τ ot+1)

)

(A.18)

Substituting to the (A.17), we have the following expressions:

∂kt+1

∂τ ot+1

= −
θ

θ − 1
s(Rt+1, τ

o
t+1)

(

1− s(Rt+1, τ
o
t+1)

(1 + τ ot+1)

)

It(1−mt)

∂kt+1

∂τ ot+1

= −
θ

θ − 1
s(Rt+1, τ

o
t+1)

(

1− s(Rt+1, τ
o
t+1)

(1 + τ ot+1)

)

kt+1

s(Rt+1, τ ot+1)

∂kt+1

∂τ ot+1

= −
θ

θ − 1
kt+1

(

1− s(Rt+1, τ
o
t+1)

(1 + τ ot+1)

)

(A.19)

The last expression refers to (3.27). Next,we derive the partial derivatives for consumption:

cyt = It(1−mt)− kt+1

∂cyt
∂τ ot+1

= −
∂kt+1

∂τ ot+1

.
(A.20)

These expressions is the derivations of (3.28). and the old-age consummption:

cot+1 = Rt+1kt+1(1 + τ ot+1)

∂cot+1

∂τ ot+1

=
∂Rt+1

∂τ ot+1

kt+1(1 + τ ot+1) +Rt+1
∂kt+1

∂τ ot+1

(1 + τ ot+1) +Rt+1kt+1

∂cot+1

∂τ ot+1

=
∂kt+1

∂τ ot+1

(1 + τ ot+1)

(

∂Rt+1

∂kt+1
kt+1 +Rt+1

)

+Rt+1kt+1

(A.21)
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Substituting (3.27) regarding ∂kt+1

∂τot+1
, we have:

∂cot+1

∂τ ot+1

= −
θ

θ − 1
kt+1

(

1− s(Rt+1, τ
o
t+1)

(1 + τ ot+1)

)

(1 + τ ot+1)

(

∂Rt+1

∂kt+1
kt+1 +Rt+1

)

+Rt+1kt+1

∂cot+1

∂τ ot+1

= −
θ

θ − 1
Rt+1kt+1

(

1− s(Rt+1, τ
o
t+1)

)

(εR,k + 1) +Rt+1kt+1

∂cot+1

∂τ ot+1

= Rt+1kt+1

(

1−
θ

θ − 1

(

1− s(Rt+1, τ
o
t+1)

)

(εR,k + 1)

)

(A.22)

the last expression is the derivations for (3.29).

A.4 Cobb-Douglas Case

Households

We apply a limiting argument of limθ→0 to the utility function in (A.1):

lim
θ→0

Vt = [(cyt )
θ + β(cot+1)

θ]
1
θ (A.23)

Because assigning θ = 0 directly to the equation yield to undefined term (power of ∞), we

employ L’Hôpital’s rule to find the limit. To apply L’Hôpital’s rule, we need to transform

(A.23) into the following expression:

lim
θ→0

ln

(

Vt

(1 + β)
1
θ

)

=
ln

(cyt )
θ+β(cot+1)

θ

1+β

θ
(A.24)

From this equation, substituting θ = 0 will yield a 0/0 result. Taking the derivative of

both the denominator and the numerator with respect to θ:

lim
θ→0

ln

(

Vt

(1 + β)
1
θ

)

=
1 + β

(cyt )
θ + β(cot+1)

θ
[(cyt )

θ ln(cyt ) + β(cot+1)
θ ln(cot+1)]

= ln(cyt ) + β ln(cot+1) by substituting θ = 0

(A.25)

The last expression of (A.25) is the logarithmic utility function employed by Dao et al.

(2017). The optimal consumption and savings choices will coincide with the logarithmic

utility function in Dao et al. (2017). Their Cobb-Douglas utility of (cyt )(c
o
t+1)

β or equivalent

to ln(cyt ) + β ln(cot+1) implies that the θ in the CES utility function (A.1) equal to 0.

Applying θ = 0 in equation (A.5), (A.6), and (A.7), we have the same result as in Dao et
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al. (2017).

kt+1 = It(1−mt)

(

β

1 + β

)

cyt = It(1−mt)

[

1−

(

β

1 + β

)]

cot+1 = It(1−mt)Rt+1(1 + τ ot+1)

[

β

1 + β

]

(A.26)

Firms and Equilibrium

The case of Cobb-Douglas production function would have ρ = 0. We need to use limiting

argument for (A.10) and (A.11). We transform (A.10) into the following expression to

apply L’Hôpital’s rule

lim
ρ→0

Rt = exp

(

lim
ρ→0

lnRt

)

= exp

(

lim
ρ→0

(

lnα+ ln z(Et−1) +
1− ρ

ρ
ln(α+ (1− α)(kt)

−ρ)

)) (A.27)

If we substitute ρ = 0, the last term would result in 0/0 expression. We could therefore

apply L’Hôpital’s rule by taking the derivatives of the numerator and denominator with

respect to ρ.

lim
ρ→0

Rt = exp

(

lim
ρ→0

(

lnα+ ln z(Et−1) +
(1− ρ)(α− 1)(kt)

−ρ ln kt
α+ (1− α)(kt)−ρ

− ln(α+ (1− α)(kt)
−ρ)

))

= exp
(

lnα+ ln z(Et−1) + ln k
(α−1)
t

)

by substituting ρ = 0

= αz(Et−1)k
(α−1)
t

(A.28)

Using similar procedure for wt in (A.11), we could get the following derivations:

lim
ρ→0

wt = exp

(

lim
ρ→0

(

ln(1− α) + ln z(Et−1) +
(1− ρ)α(kt)

ρ ln kt
α(kt)ρ + (1− α)

− ln(α(kt)
ρ + (1− α))

))

= exp (ln(1− α) + ln z(Et−1) + ln(kt)
α)

= (1− α)z(Et−1)(kt)
α

(A.29)

Both of the last expressions in (A.28) and (A.29) is the same as in the Cobb-Douglas

Production function in Dao et al. (2017). We summarise the system of equations in Table

4.
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Table 4: System of Equations for Capital Income Subsidy Scheme–Cobb-Douglas Case

cyt = It(1−mt)

[

1−

(

β

1 + β

)]

(A.30)

cot+1 = It(1−mt)Rt+1(1 + τ ot+1)

[

β

1 + β

]

(A.31)

kt+1 = It(1−mt)

(

β

1 + β

)

(A.32)

It = (1− α)z(Et−1)(kt)
α

(

1−
α

1− α
(τ ot )

)

(A.33)

Rt+1 = αz(Et)k
(α−1)
t+1 (A.34)

Et = (1− δ)Et−1 + ξkt − γmt−1It−1 (A.35)

z(Et) = Ae−|Et| (A.36)

Pareto-Improving Contracts with Cobb-Douglas Functions

To derive the sets Pareto-improving social contracts with capital income subsidy scheme

analytically, we first derive the utility gains for both Gt and Gt+1.

For Gt : We substitute the optimal choices in (A.26) into the logarithmic utility function

in (A.25):

Vc
t = ln

(

It(1−mt)

1 + β

)

+ β ln

(

It(1−mt)Rt+1(1 + τ ot+1)

[

β

1 + β

])

(A.37)

where It = wt(1−)τyt and τyt = α
1−α

τ ot from equation (3.23) if ρ = 0. We then substitute

Rt from (A.28), so we have the following expression:

Vc
t = ln

(

It(1−mt)

1 + β

)

+ β ln

(

It(1−mt)αz(Et)(kt+1)
α−1(1 + τ ot+1)

[

β

1 + β

])

(A.38)

Now, we can compare the lifetime utility for Gt without social contract by imposing mt =
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τ ot+1 = 0, and denoting endogenous variables under no social contract by tilde.

V0
t = ln

(

Ĩt
1 + β

)

+ β ln

(

Ĩtαz(Ẽt)(k̃t+1)
α−1

[

β

1 + β

])

(A.39)

The symbols Ĩt, z(Ẽt), and k̃t represents the net income, total productivity factor, and

capital per capita under no social contract at for generation t, respectively. The difference

of lifetime utility between with and without social contracts:

∆Vc
t = ln

(

It

Ĩt
(1−mt)

)

+ β ln

(

It

Ĩt
(1−mt)

(

z(Et)

z(Ẽt)

)(

kt+1

k̃t+1

)α−1

(1 + τ ot+1)

)

(A.40)

Because we consider only the social contract (mt, τ
o
t+1), the the pollution stock Et (see

equation (3.21)) is the same, with or without social contract. It involves only the previous

period mitigation share and net income where Mt = mt−1It−1. Thus, we could assume

z(Ẽt) = z(Et) and z(Ẽt−1) = z(Et−1).Furthermore, the mitigation share mt affect only

kt+1 (see equation (A.26)), not the saving decision in the previous period kt, we could

assume k̃t = kt. It also implies that τ̃ ot = τ ot . From (A.29), It = wt(1 − τyt ), and

τyt = α
1−α

τ ot , we derive that:

It

Ĩt
=

(1− α)z(Et−1)(kt)
α
(

1− α
1−α

τ ot

)

(1− α)z(Ẽt−1)(k̃t)α
(

1− α
1−α

τ̃ ot

) = 1

Based on (A.26), we could also derive that kt+1

k̃t+1
= (1−mt). We conclude with utility gains

from social contract for Gt:

∆Vc
t = (1 + αβ) ln(1−mt) + β ln(1 + τ ot+1). (A.41)

For Gt+1 : We shift equation (A.38) and (A.39) by one period:

Vc
t+1 = ln

(

It+1(1−me
t+1)

1 + β

)

+β ln

(

It(1−me
t+1)αz(Et+1)(kt+2)

α−1(1 + τ o,et+2)

[

β

1 + β

])

(A.42)

where (me
t+1, τ

o,e
t+2) is the expected social contract after social contract (mt, τ

o
t+1). For the

lifetime utility without social contract, we again impose mt = τ ot+1 = 0. We also derive
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the lifetime utility for generation t+ 1 under no social contract (mt, τ
o
t+1) = (0, 0).

V0
t+1 = ln

(

Ĩt+1(1− m̃e
t+1)

1 + β

)

+β ln

(

Ĩt(1− m̃e
t+1)αz(Ẽt+1)(k̃t+2)

α−1(1 + τ̃ o,et+2)

[

β

1 + β

])

(A.43)

With the argument that the preceding contract (mt−1, τ
o
t ) and succeeding contract (me

t+1, τ
o,e
t+2)

do not affect the utility gains, it implies that τ̃ o,et+2 = τ o,et+2 and m̃e
t+1 = me

t+1. The utility

gains for generation t+ 1:

∆Vc
t+1 = (1 + β) ln

(

It+1

Ĩt+1

)

+ β ln

(

z(Ẽt+1)

z(Et+1)

)

+ β(α− 1) ln

(

kt+2

k̃t+2

)

(A.44)

From (A.26) and (A.29), we could derive that kt+2 = It+1(1−mt+1)
β

1+β
and

It+1 = (1− α)z(Et)(kt+1)
α
(

1− α
1−α

τ ot+1

)

. So the ratio

kt+2

k̃t+2

=
It+1

Ĩt+1

=

(

kt+1

k̃t+1

)α(

1−
α

1− α
τ ot+1

)

We call the pollution stock equation (3.9) and total factor productivity (3.22) to find the

ratio:
z(Et+1)

z(Ẽt+1)
=
e−|(1−δ)Et+kt+1−γmtIt|

e−|(1−δ)Ẽt+k̃t+1|
= ek̃t+1−kt+1+γmtIt = e

β+γ+βγ
1+β

mtIt

we use again the expression kt+1

k̃t+1
= (1−mt). Therefore, utility gains from social contract

(mt, τ
o
t+1) for Gt+1:

∆Vc
t+1 = (αβ + 1) ln

((

1−
α

1− α
τ ot+1

)

(1−mt)
α

)

+
β(β + γ + βγ)

1 + β
mtIt. (A.45)

Sets of Pareto-Improving Contracts : We use expressions (A.41) and (A.45), set

them equal to zero. For Gt:

∆Vc
t = (1 + αβ) ln(1−mt) + β ln(1 + τ ot+1) ≥ 0

ln(1 + τ ot+1)
β ≥ ln(1−mt)

−(1+αβ)

τ ot+1 ≥

(

1

1−mt

)
αβ+1

β

− 1 ≡ Ω(mt)

(A.46)
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For the Gt+1:

∆Vc
t+1 = (αβ + 1) ln

((

1−
α

1− α
τ ot+1

)

(1−mt)
α

)

+
β(β + γ + βγ)

1 + β
mtIt ≥ 0

(

1−
α

1− α
τ ot+1

)

(1−mt)
α ≥ e

−
β(β+γ+βγ)
(1+β)(αβ+1)

mtIt

τ ot+1 ≤
1− α

α

[

1− e
−

β(β+γ+βγ)
(1+β)(αβ+1)

mtIt(1−mt)
−α

]

≡ ψ(mt, It)

(A.47)

Income Threshold : The derivation for the income threshold requires the slope of

ψ(mt, It) and Ω(mt) to be equal at limmt→0+ :

lim
mt→0+

∂ψ(mt, It)

∂mt
= lim

mt→0+

∂Ω(mt)

∂mt
(A.48)

lim
mt→0+

∂ψ(mt, It)

∂mt

= lim
mt→0+

1− α

α

(

e
−

β(β+γ+βγ)
(1+β)(αβ+1)

mtIt

)[

β(β + γ + βγ)

(1 + β)(αβ + 1)
It(1−mt)

−α − α(1−mt)
−α−1

]

=
1− α

α

[

β(β + γ + βγ)

(1 + β)(αβ + 1)
It − α

]

(A.49)

lim
mt→0+

∂Ω(mt)

∂mt
= lim

mt→0+

αβ + 1

β

(

1

1−mt

)
αβ+β+1

β

=
αβ + 1

β

(A.50)

Therefore, the income threshold:

1− α

α

[

β(β + γ + βγ)

(1 + β)(αβ + 1)
It − α

]

=
αβ + 1

β

β(β + γ + βγ)

(1 + β)(αβ + 1)
It =

α(1 + β)

β(1− α)

Ît =
α(1 + αβ)(1 + β)2

(1− α)(β + γ + γβ)β2

(A.51)
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Capital per Capita Threshold : Because we assume kt as the exogeneous variable

instead of income, we derive the threshold of kt from (A.51):

(1− α)z(Et−1)(kt)
α (1− τyt ) =

α(1 + αβ)(1 + β)2

(1− α)(β + γ + γβ)β2

(kt)
α =

1

(1− α)z(Et−1) (1− τyt )

α(1 + αβ)(1 + β)2

(1− α)(β + γ + γβ)β2

k̂t =

(

1

(1− α)z(Et−1) (1− τyt )

α(1 + αβ)(1 + β)2

(1− α)(β + γ + γβ)β2

)

1
α

(A.52)

B Lump sum Transfers

B.1 Households Utility Maximization

max
c
y
t ,kt+1,c

o
t+1

Vt =
(cyt )

θ

θ
+ β

(cot+1)
θ

θ

subject to

cyt + kt+1 = wt(1−mt)− Tt

cot+1 = Rt+1kt+1 + Tt+1

(B.1)

Here, we can write the Lagrangian function:

L =
(cyt )

θ

θ
+ β

(cot+1)
θ

θ
+ λ1(c

y
t + kt+1 − wt(1−mt) + Tt) + λ2(c

o
t+1 −Rt+1kt+1 − Tt+1)

The first order conditions:

∂L

cyt
= (cyt )

θ−1 + λ1 = 0

∂L

cot+1

= β(cot+1)
θ−1 + λ2 = 0

∂L

kt+1
= λ1 − λ2Rt+1 = 0

∂L

λ1
= cyt + kt+1 − wt(1−mt) + Tt = 0

∂L

λ2
= cot+1 −Rt+1kt+1 − Tt+1 = 0

(B.2)

The ratio of the first and the second partial derivative, combining with the third partial

derivative result in

1

β

(

cyt
cot+1

)θ−1

= Rt+1 ⇐⇒ cyt = cot+1(βRt+1)
1

θ−1
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Substituting to the fourth and the fifth partial derivative, we could solve for kt+1.

(Rt+1kt+1 + Tt+1)(βRt+1)
1

θ−1 + kt+1 = wt(1−mt)− Tt

β
1

θ−1 (Rt+1)
θ

θ−1kt+1 + kt+1 = wt(1−mt)− Tt − Tt+1(βRt+1)
1

θ−1

kt+1 =
wt(1−mt)− Tt − Tt+1(βRt+1)

1
θ−1

1 + (βRt+1)
1

θ−1Rt+1

(B.3)

The last expression is the derivations of (3.32). For the firm decisions, the capital and

labor employed will be the same as in the capital income subsidy case. The return on

capital:

Rt+1 = αz(Et)
[

α+ (1− α)(kt+1)
−ρ
]
1−ρ
ρ (B.4)

Substituting to the kt+1 under the lump sum case.

kt+1 =
wt(1−mt)− Tt − Tt+1(βαz(Et) [α+ (1− α)(kt+1)

−ρ]
1−ρ
ρ )

1
θ−1

1 + (β
1
θαz(Et) [α+ (1− α)(kt+1)−ρ]

1−ρ
ρ )

θ
θ−1

(B.5)

We solve for kt+1 using numerical computations.

kt+1 + kt+1(β
1
θαz(Et)

[

α+ (1− α)(kt+1)
−ρ
]
1−ρ
ρ )

θ
θ−1 − wt(1−mt) + Tt+

Tt+1(βαz(Et)
[

α+ (1− α)(kt+1)
−ρ
]
1−ρ
ρ )

1
θ−1 = 0 (B.6)

B.2 Comparative-Static Analysis

To study the effects of mt on kt+1, we derive the following expressions:

kt+1 + β
1

θ−1 (Rt+1)
θ

θ−1kt+1 + Tt + Tt+1(βRt+1)
1

θ−1 = wt(1−mt)

∂kt+1

∂mt

(

1 + β
1

θ−1 (Rt+1)
θ

θ−1

(

1 +
θ

θ − 1

kt+1

Rt+1

∂Rt+1

∂kt+1
+

1

θ − 1
Tt+1

1

(Rt+1)2
∂Rt+1

∂kt+1

))

= −wt

∂kt+1

∂mt

(

1 + β
1

θ−1 (Rt+1)
θ

θ−1

(

1 +
θ

θ − 1
εR,k +

1

θ − 1

Tt+1

kt+1Rt+1
εR,k

))

= −wt

∂kt+1

∂mt

(

1 + β
1

θ−1 (Rt+1)
θ

θ−1

(

1 +
εR,k

θ − 1

(

θ +
Tt+1

kt+1Rt+1

)))

= −wt

(B.7)

Therefore,
∂kt+1

∂mt
= −

wt
(

1 + (β
1
θRt+1)

θ
θ−1

(

1 +
εR,k

θ−1

(

θ + Tt+1

kt+1Rt+1

))) (B.8)

This expression corresponds to (3.39).
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Next, we derive the partial derivatives of cyt w.r.t. mt:

cyt = wt(1−mt)− Tt − kt+1

∂cyt
∂mt

= −wt −
∂kt+1

∂mt
.

(B.9)

For partial derivative of cot+1 w.r.t. mt:

cot+1 = Rt+1kt+1 + Tt+1

∂cot+1

∂mt
=
∂Rt+1

∂kt+1

∂kt+1

∂mt
kt+1 +Rt+1

∂kt+1

∂mt

∂cot+1

∂mt
=
∂kt+1

∂mt
Rt+1 (εR,k + 1)

(B.10)

For the partial derivatives w.r.t. Tt+1, we derive the following expressions:

kt+1 + β
1

θ−1 (Rt+1)
θ

θ−1kt+1 + Tt + Tt+1(βRt+1)
1

θ−1 = wt(1−mt)

∂kt+1

Tt+1

(

1 + β
1

θ−1 (Rt+1)
θ

θ−1 +
θ

θ − 1
(βRt+1)

1
θ−1

∂Rt+1

∂kt+1
kt+1 +

Tt+1

θ − 1

(βRt+1)
1

θ−1

Rt+1

∂Rt+1

∂kt+1

)

= −(βRt+1)
1

θ−1

∂kt+1

Tt+1

(

1 + β
1

θ−1 (Rt+1)
θ

θ−1

(

1 +
θ

θ − 1

kt+1

Rt+1

∂Rt+1

∂kt+1
+

Tt+1

θ − 1

1

R2
t+1

∂Rt+1

∂kt+1

))

= −(βRt+1)
1

θ−1

(B.11)

Therefore:
∂kt+1

∂Tt+1
= −

(βRt+1)
1

θ−1

1 + (β
1
θRt+1)

θ
θ−1

(

1 +
εR,k

θ−1

(

θ + Tt+1

Rt+1kt+1

)) (B.12)

For the consumptions:

cyt = wt(1−mt)− Tt − kt+1

∂cyt
∂Tt+1

= −
∂kt+1

∂Tt+1

(B.13)

cot+1 = Rt+1kt+1 + Tt+1

∂cot+1

∂Tt+1
=
∂Rt+1

∂kt+1

∂kt+1

∂Tt+1
kt+1 +Rt+1

∂kt+1

∂Tt+1
+ 1

∂cot+1

∂Tt+1
=
∂kt+1

∂Tt+1
Rt+1 (εR,k + 1) + 1

(B.14)
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B.3 Cobb-Douglas Case

max
c
y
t ,kt+1,c

o
t+1

Vt = ln cyt + β ln cot+1

subject to

cyt + kt+1 = wt(1−mt)− Tt

cot+1 = Rt+1kt+1 + Tt+1

(B.15)

Here, we can write the Lagrangian function:

L = ln cyt + β ln cot+1 + λ1(c
y
t + kt+1 − wt(1−mt) + Tt) + λ2(c

o
t+1 −Rt+1kt+1 − Tt+1)

The first order conditions:

∂L

cyt
=

1

cyt
+ λ1 = 0

∂L

cot+1

=
β

cot+1

+ λ2 = 0

∂L

kt+1
= λ1 − λ2Rt+1 = 0

∂L

λ1
= cyt + kt+1 − wt(1−mt) + Tt = 0

∂L

λ2
= cot+1 −Rt+1kt+1 − Tt+1 = 0

(B.16)

The ratio of the first and the second partial derivative, combining with the third partial

derivative result in
1

β

(

cot+1

cyt

)

= Rt+1 ⇐⇒ cot+1 = cyt βRt+1

Substituting to the fourth and the fifth partial derivative, we could solve for kt+1.

Rt+1kt+1 + Tt+1 = (wt(1−mt)− Tt − kt+1)βRt+1

kt+1 +
kt+1

β
+

Tt+1

βRt+1
= wt(1−mt)− Tt

kt+1 =

(

β

1 + β

)(

wt(1−mt)− Tt −
Tt+1

βRt+1

)

(B.17)

For the firm decisions, the capital and labor employed will be the same as in the capital

income subsidy case. substituting

Rt+1 = αz(Et)k
α−1
t+1
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. we have nonlinear equation problem:

kt+1 =

(

β

1 + β

)

(

wt(1−mt)− Tt −
Tt+1

αβz(Et)k
α−1
t+1

)

(B.18)

Because kt+1 cannot be solved analytically, we again rely on numerical solutions.

Table 5: System of Equations for Cobb-Douglas Lump Sum Transfers

kt+1 =

(

β

1 + β

)(

wt(1−mt)− Tt −
Tt+1

βRt+1

)

(B.19)

cyt = wt(1−mt)− Tt − kt+1 (B.20)

cot+1 = Rt+1kt+1 + Tt+1 (B.21)

wt = (1− α)z(Et−1)k
α
t (B.22)

Rt+1 = αz(Et)k
α−1
t+1 (B.23)

Et = (1− δ)Et−1 + ξkt − γmt−1wt−1 (B.24)

z(Et) = Ae−|Et| (B.25)
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C Robustness

C.1 Varying Parameter ρ

We try to simulate the capital income subsidy scheme under an easy and a difficult sub-

stitution of capital and labor.
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(a) Easy substitution with θ = 0.1, ρ = 0.1, and k0 = 2
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(b) Difficult substitution with θ = 0.1, ρ = −0.1, and k0 = 2
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(c) Easy substitution with θ = −0.1, ρ = 0.1, and k0 = 2
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(d) Difficult substitution with θ = −0.1, ρ = −0.1, and k0 = 2

Figure 26: Capital Income Subsidy Scheme with Different θ and ρ
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(a) Easy substitution with θ = 0.1, ρ = 0.1, and k0 = 2
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(b) Difficult substitution with θ = 0.1, ρ = −0.1, and k0 = 2
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(c) Easy substitution with θ = −0.1, ρ = 0.1, and k0 = 2
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(d) Difficult substitution with θ = −0.1, ρ = −0.1, and k0 = 2

Figure 27: Lump-sum Transfer Scheme with Different θ and ρ
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