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Abstract 

 
Road infrastructure is strongly associated with environmental degradation in developing countries 

and specifically in tropical forests. However, such countries lack historical road data. Utilizing 

remote sensing techniques, this study creates a time series road network dataset for Cameroon 

from 2001 to 2020. At the same time, this body of work estimates the impact of distance to roads 

on deforestation using fixed-effects and propensity score matching models. The study concludes 

that the application of the historical data provides more accurate results of the effect, in comparison 

to the static roads which tend to overestimate the impact. Moreover, the year fixed-effect model 

indicates that the probability of deforestation increases by 0.98% when the distance to the closest 

road segment increases by 1km. The paper suggests that historical road data could be implemented 

in other studies and variables which use static observations such as road infrastructure, in order to 

generate robust results. 
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1. Introduction 

Public infrastructure is a necessary condition for economic growth. This is particularly true for 

developing economies that are striving to mobilise resources, allocate them efficiently and create 

conditions conducive to economic expansion. While this remains an undisputed path to sustainable 

growth and prosperity there are important trade-offs to consider: the case of roads is exemplary 

because constructing and expanding road networks leads to better access to resources, jobs, and 

markets creation; yet, roads generate negative externalities with environmental implications that 

policy experts and researchers need to analyse (Meijer et al., 2018). In other words, there is no 

such thing as a free lunch. Economic choices - no matter how neutral they might seem - inevitably 

bear significant costs for the environment. Namely, greenhouse emissions rise, and human 

proximity to the environment increases with unpredictable effects. Given the climate emergency 

that we face and the need for developing countries to upscale and upgrade their production by 

improving public infrastructure it is imperative to consider the environmental impact of road 

development.  

According to the latest available data from the Global Forest Watch, Cameroon ‘lost 1.53Mha of 

tree cover, equivalent to a 4.9% decrease in tree cover since 2001’. The main driver of this 

environmental crisis is a shift to agriculture in the national production of the country. Increased 

production of agricultural goods requires roads to facilitate access to land, reach untapped 

resources and facilitate mobility of goods. In the last decades, we have observed a steady increase 

in roads, especially in developing countries that are lagging behind. Nevertheless, the academic 

literature only recently started to analyse in a rigorous way the consequences of road development. 

What used to be a certainty in development economics (i.e., net positive effects of an investment 

in road infrastructure) is contested by researchers who reveal the tradeoff between road 

development and deforestation. For example, Kleinschroth et al. (2019) examined the impact of 

the road infrastructure on the ecosystem in Congo Basing and observed that road expansion 

deteriorates the environmental conditions. However, they only used two road datasets, one for the 

year 2003 and one for 2017. To the best of my knowledge, there is no other study that has analyzed 

historical road data to evaluate the impact on the environment and specifically on deforestation.  

The present study focuses on Cameroon, a country in the Congo Basin that has experienced 

substantial forest loss in recent years. Moreover, it is important to mention that there is currently 
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no road network panel data for Cameroon. Consequently, the current thesis aims to examine the 

impact of road proximity on deforestation across years by extracting a road dataset for the period 

of 2001 to 2020 employing remote sensing analysis. Using the derived time series road dataset, 

this thesis also compares the results to other relevant studies which use static roads in their analysis 

to examine whether the dynamic roads provide us with improved and accurate findings. In 

particular, the results are being compared to Panlasigui et al. (2018) who investigated the effect of 

the Forest Steward Council certificate on deforestation in Cameroon including proximity to roads. 

However, they analysed the effect by applying static roads, which did not vary over time, instead 

of dynamic roads.  

The findings of the current research indicate that the inclusion of dynamic roads provides more 

precise estimations, while the static roads dataset leads to an overestimation of the environmental 

benefits or effects. This may motivate further studies to utilize historical road datasets in order to 

determine the effects that infrastructure has on the environment. Furthermore, the outcome may 

alert policymakers as well, since environmentally friendly certificates seem to be overestimated 

while the road panel data are not being incorporated. Additionally, the approach of including 

historical data can certainly be applied to other applications than deforestation, such as urban 

sprawl or economic growth. The same may apply to other kinds of manmade infrastructure than 

roads. 

This study is divided into 7 sections. In section 2, relevant literature regarding the correlation 

between environmental degradation and road proximity is being discussed. Moreover, the section 

also reflects on the importance of utilizing remote sensing techniques and data to identify these 

effects. Section 3 elaborates on the road extraction methodology and on the data description. 

Additionally, section 4 discusses the empirical strategy which was performed in this research. 

Namely, the fixed effects, the pooled OLS and the Propensity Score Matching models. The results 

of the models are being presented in section 5. Furthermore, the empirical results are discussed in 

section 6. Finally, section 7 summarizes the study and discusses potential future research. 
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2. Literature Review 

This section discusses the main findings of relevant studies regarding road infrastructure expansion 

and its effects. The approach of the following literature review is twofold. The first part elaborates 

on the impact of road network development on the ecosystem. Then, we take stock of the literature 

that weighs the benefits of using satellite and georeferenced data to examine the consequences of 

the expansion and battle the challenges that arise. 

Barber et al. (2014) while studying the Amazon region, observed that the proximity to 

transportation networks and specifically to roads created by logging companies is a significant 

factor of environmental degradation in Amazonia. Moreover, they found that deforestation largely 

occurred in areas that were within a 5.5km radius of road segments. However, their research shows 

that the implementation of environmentally friendly policies would reduce the ecosystem’s 

degradation. Kleinschroth et al. (2019), contend that in spite of the potential benefits of the road 

network on the development of isolated forest segments, such practice could also bear negative 

consequences on the ecosystem. The study focuses on the Congo Basin, and it records a positive 

correlation between proximity to roads and deforestation. In particular, they observe increased 

deforestation due to the unrestrained expansion of unpaved logging roads used by timber 

companies. Finally, the disuse of the newly created roads after the logging procedure, may benefit 

the ecosystem and rectify their negative impact (Kleinschroth et al., 2019). 

Distance to roads is considered a stimulus for economic growth and poverty reduction by 

connecting remote areas (Jacoby 2000; Najman 2010). However, as mentioned before, it may also 

deteriorate the environmental conditions, by the expansion of the network. Another project that 

investigated road infrastructure development in the Brazilian Amazon is the one from Pfaff et al. 

(2007). The study observed that road investments in the Brazilian Amazon led to an increase in 

deforestation in a census tract within 100km. On the other hand, the examination of a distance 

between 100km and 300km produced contradicting results. Specifically, they argue that a road 

expansion or investment in such a distance may lead to a decrease in ecosystem deterioration. Yet, 

the latter part of the results is statistically insignificant and does not constitute a reliable source. 

Moreover, the study by Laporte et al. (2007) focuses on Central Africa and finds that road 

infrastructure expanded significantly in the last decades. Indicatively, it rose from 156km a year-1 
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during 1976–1990 to over 660 km a year-1 after 2000. Laporte et al. (2007) used satellite data and 

observed that the logging roads represent one-third of the total roads in the Congo Basin. 

Additionally, they inspected the largest effect of deforestation in Cameroon. 

From a different perspective, Lopez et al. (2017) examined the impact of road segments on 

biodiversity degradation. They detected that the majority of the fauna was affected in areas with 

road accessibility. Specifically, a considerable number of mammals became extinct in the area 

within a 7 km distance from road segments. However, the systematic review from Geist and 

Lambin (2002), even though they observed a negative association between road existence and 

environmental degradation in Latin America, concluded that the evidence from Africa and Asia 

was unreliable due to the lack of historical and accurate road infrastructure data. 

Meijer et al. (2018) showcase the need for accurate spatial road datasets to underpin strategic 

spatial planning in order to reduce the impacts of roads in the remaining unaffected ecosystems. 

In particular, the study inspected the socio-economic effect of road expansion and they suggest 

that georeferenced information on road infrastructure is a significant tool for spatial planning and 

environmental impact assessments. As a response, Burke et al. (2021) argue that modern satellite-

based methods can produce precise data. In many cases, satellite data provide the same degree of 

accuracy as their ground-based counterparts. The study notes that these techniques are frequently 

used by researchers to estimate land-use activity, economic development and policy assessment. 

Namely, the study from Yeh et al. (2020) uses publicly available satellite imagery and deep 

learning for the evaluation of economic development in Africa. Accordingly, Laporte et al. (2007) 

indicate that regular monitoring with satellite remote sensing allows for a consistent examination 

of the effects on land-use changes. However, the research from Burke et al. (2021) highlights that 

despite the strong potential for spatial analysis of satellite-based approaches, they cannot substitute 

the ground data but only augment their validity. Meijer et al. (2018) support that the need for 

historical and accurate data is prevalent since large increases in road length were projected for 

developing nations. Additionally, Burke et al. (2021) indicated that at least half of African nations 

lack consistent data, as they conduct ground-based surveys once every 6.5 years. 

Last, Kleinschorth et al. (2019) using satellite-based data, created a road network dataset on the 

Congo Basin for the year 2017, including logging concession roads, which could not be found in 
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any other road dataset so far. The present paper was significantly motivated by the approach from 

Kleinschorth et al. (2019). Namely using remote sensing data as well, this work aims to contribute 

to the existing literature by the creation of a time series road network dataset on Cameroon from 

2001 to 2020. Due to the fact that the data in developing countries remain scarce, it would be 

compelling to identify patterns by analyzing historical evidence. Furthermore, unlike previous 

research, this study utilizes the derived dataset in order to evaluate the impact of the road network 

on Cameroon’s forests over time. 

 

3. Methodology and Data Collection 

3.1 Classification approach 

This section discusses the main methods that have been used in order to create a dynamic road 

dataset for Cameroon. The first part elaborates on the remote sensing approach, the classification 

model, and its accuracy. While the second part describes the time-series road selection process. 

Our goal was to create a panel road dataset for Cameroon as there is currently no adequate data for 

the period before 2015. Taking into account the substantial deforestation that has occurred in the 

Congo Basin over the last two decades, we extracted road segments for the time period between 

2001 and 2020. This was based on the Hansen et al. (2013) updated dataset which provides 

georeferenced deforestation data for the same study period. By analyzing these datasets, we were 

able to examine the causal effects of road infrastructure on deforestation in Cameroon. 

In order to do so, we analyzed public access satellite images using the Google Earth Engine (GEE) 

platform; specifically, we performed supervised pixel-based image classification on satellite 

images derived from Landsat 7 and Landsat 8. The resolution of each pixel accounts for a 30m X 

30m surface. The classification modelling was a complicated process since Cameroon is located 

in the Congo Basin rainforest. The majority of the area is facing storms and rains throughout the 

year. Therefore, cloud-free satellite images are scarce, hence we had to exclude some regions 

which would bias our sample. Specifically, the area close to Douala - even though it is the biggest 

city in Cameroon - had to be excluded since it was covered with clouds during the whole-time 

frame of our study. At the same time, the constant cloud existence affected road detection as well. 
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To address this challenge, we applied five-year intervals in the period of interest so we could 

extract accurate results. In particular, we utilized a mosaic of satellite images for the following 

years: 2005, 2010, 2015, and 2020. The mosaic application selects the less cloudy images over the 

years. As presented in Figure 3.1. the majority of the forest cover area is located in the Central, 

East, and South parts of Cameroon. On the other hand, the northern part consists of mountains and 

almost no forest or vegetation. Since the main objective of this study is to identify the impact of 

the road network on deforestation in Cameroon, the northern part of the country was not included 

in the analysis.  

 

Figure 3.1: Morphological Map of Cameroon. Source: Schwab et al. 2015 

Overall, for the classification, we used 8 satellite images and managed to cover 182.535 square 

km each year. In order to provide a consistent structure for the classification, we based our classes 

on the Land Cover Classification System (LCCS) provided by FAO. For our analysis, we had to 

modify and add extra values to tackle visual challenges, such as cloud existence and the Landsat 

7 sensor’s defect. Thus, we created the following main classes: waterbodies (sea, rivers, lakes), 

vegetation (forests, land crops, trees), soil (agriculture and grasslands), urban (cities, infrastructure, 

buildings), roads (paved and unpaved roads, mud or sand roads) and clouds (clouds and satellite 

images combination defects). Finally, we introduced the supervised learning algorithm provided 

by GEE based on Breiman (2001) and (2017).  We trained the algorithm by adding land-use values 
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that have been manually identified from satellite images.  After the training process, the algorithm 

was able to classify each pixel of the satellite image (Figure 3.2). As a result, as illustrated in 

Figure 3.3, a classified map indicating the land cover characteristics was generated. 

 

Figure 3.2: Satellite image of a region in Cameroon before the supervised classification intervention.

 

Figure 3.3: A classified image of the same region illustrated in Figure 3.2 
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3.2 Accuracy assessment of the classification model 

In this section, we examine the accuracy of the classification. The class accuracies are determined 

by comparing test pixels with the corresponding location in the classified image. In a perfect world, 

we would be able to use field verified ground reference locations for the test pixels. Of course, this 

is not always possible, and, in this case, we may also select references that have been visually 

identified from the imagery. The pixels should be evenly distributed across the image. To evaluate 

our supervised learning algorithm, we perform an accuracy assessment on Landsat 7 and Landsat 

8 satellite images. In particular, we selected 840 (ground truth) reference pixels indicating the 

corresponding class of the land cover. So, we chose the pixels that we were certain that were roads, 

and pixels that were not. Given that we know that our satellite images include a significant amount 

of forests and vegetation, we adjusted the number of pixels on the percentage of the actual land 

cover. 

In order, to assess the classification accuracy, we used again the Google Earth Engine platform. 

We generated two samples from our data: one for training and one for testing. The training sample 

is used to train the classifier, while the testing one is being used as a test to get a confusion matrix 

representing the (expected) test set accuracy. Confusion matrixes are a widely accepted method of 

determining the accuracy of the classification (Breimann 2001; Foody 2002). However, it is 

important to remember that the biases that are present in the test pixels will also bias the accuracy 

of the confusion matrix.   

We used 70% training and 30% testing. In particular, the 30% of the testing accounted for 252 

pixel points. As the main focus of this study is to correctly identify road segments across years, 

we clustered into two classes, so we can examine the road pixel classification accuracy. The first 

part includes the potential road pixels (infrastructure, roads, and soil parts), while the second part 

consists of the non-road pixels (water, vegetation, and clouds). In Table 3.1, we can observe that 

the classification scored high overall accuracy. The producer’s accuracy achieved 96.3 % while 

the user’s accuracy notched a 95.5%. In particular, the classification model counted 5 out of 111 

road pixels as a vegetation land cover. This was quite expected since the infrastructure and soil 

land cover reflection was similar to vegetation in many regions across South Cameroon. 
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Table 3.1: Accuracy assessment results 

 Roads Other Ground Truth Users Accuracy 

Roads 137 4 141 97.16% 

Other 5 106 111 95.49% 

Total 142 110 252  

Producer's Accuracy 96.47% 96.36%  Total Accuracy = 96.5% 

     

Kappa Coefficient   0.927  

 

Overall accuracy essentially tells us out of all of the reference sites what proportions were mapped 

correctly. In our case, we scored an overall accuracy of 96.5% which indicates that the majority of 

the ground truth pixels were classified correctly. The Kappa Coefficient is generated from a 

statistical test to evaluate the accuracy of classification. In our model, the coefficient stands for 

0.927. A value close to 1 indicates that the classification is significantly better than random. 

Furthermore, the ground truth pixels have been as near to evenly distributed as possible in order 

to avoid potential bias in the accuracy. So, in order to ensure that the training samples are 

uncorrelated with the evaluation sample, we removed samples that are within 10km of any other 

sample using spatial join. In that way, we avoided spatial autocorrelation. 

3.3 Road Selection Methodology 

It was essential to have accurate classified images in order to implement our methodology for the 

time series road dataset production. By introducing these images in QGIS, we were able to 

reclassify the images and extract only the pixels that could be accounted for as part of roads (road 

pixels). We utilized the 2021 Open Street Maps (OSM) road dataset as a benchmark and compared 

each road segment to the road pixels. Our approach indicates that if the potential road pixels 

overlap with the 2021 OSM roads, then the whole road segment overlapping with the road pixels 

is selected for that year of the road dataset. However, the potential road pixels had a small deviation 

of five meters from the actual road segments, as the satellite images represented 30m X 30m pixels, 

while the OSM road segments had ground measurements. 
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Figure 3.4: The methodology process for road segment selection 

To address this problem, we buffered the OSM segment by 40m in total, so it would include the 

road pixels inside the segment surface area. However, this also led to having a bigger surface of 

the actual road segments. Consequently, a significant decrease in the percentage of road pixels in 

each road segment was observed. Our approach compares the surface of the potential road pixels 

to the surface OSM road segments and selects the ones that cover at least 10% of the road 

segments. A manual accuracy assessment was performed by randomly testing 100 road segments. 

We concluded that by defining a threshold of 10% surface inclusion of the classified pixels inside 

the area of the OSM road segments the selection became accurate and precise. In particular, while 

setting the threshold higher than 10% in our selection process, the potential road pixels were 

underestimated, and a significant amount of road segments were excluded. At the same time, while 

the threshold was set lower than 10% the roads were overestimated. We also excluded in our 

formula single pixels in order to avoid potential bias. Figures 3.5 and 3.6, show the way that a road 

is being selected. Specifically, in Figure 3.5, which is a reclassified image, we can observe in black 

the parts (pixels) that are considered as potential road segments and in white all the rest. The red 

lines represent the 2021 OSM roads. In Figure 3.6, our model selects only the segment -the yellow 

line- that exists in Figure 3.5 too. The rest segments (blue lines) are being dropped from our dataset 

since they do not exist in the examined period. In that way, we derived four road datasets for the 

years 2005, 2010, 2015 and 2020. Finally, we removed the buffer intervention from the selected 

roads in order to obtain actual measurements. 
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Figure 3.5: A reclassified image of a region in Cameroon in 2005 obtained from Landsat 7  

 

Figure 3.6: Illustration of the road selection for the same region as Figure 3.5 
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3.4 Data 

This section presents and discusses the data that have been utilized for this study. The data was 

acquired from several sources. Specifically, we derived our satellite images from Google Earth 

Engine and explicitly from Landsat 7 and Landsat 8 provided by the United States Geological 

Survey (USGS) and NASA. The 2021 road dataset that was utilized as a benchmark in our 

methodology was derived by Open Street Maps. The Euclidean distance to roads was estimated 

through QGIS and calculated in km. Moreover, the deforestation and the forest cover data were 

obtained from the Hansen et al. (2013) database for global deforestation from 2001 to 2020. Forest 

loss is defined as a stand-replacement disturbance (a change from a forest to a non-forest). While 

forest cover is defined as a standard percentage through all the years of interest. In particular, as a 

canopy closure for all greenery greater than 5m in height. Regarding the biophysical features, such 

as elevation and slope, were obtained by Jarvis et al. (2008) topographic mission. The Hijmans et 

al. (2005) climate dataset was utilized in order to extract the annual average precipitation values. 

The remaining geographical variables were calculated in GEE. Last, the FSC data stands for the 

Forest Steward Council certification which was made available by the FSC organization website 

and the World Resource Institute. 

Table 3.2: Data Sources 

Data Source Details 

Satellite Images USGS - NASA (2001-2020) 
Landsat7 and Landsat8 - Processed on 
Google Earth Engine  

2021 Road Dataset Open Street Maps (OSM) Processed on QGIS 

Deforestation Hansen et al. (2013) 
2021 Updated version of deforestation data 
(2001 - 2020) 

Forest Cover Hansen et al. (2013) 
Standard percentage through all the years 
(2001 - 2020) 

Annual Average 
Precipitation Hijmans et al. (2005) Processed on QGIS 

Elevation and Slope Jarvis et al. (2008) Processed on QGIS 

Distances USGS - NASA Processed on QGIS 

FSC certificate 
FSC.org (2020) and World Resource 
Institute (2021)  Processed on QGIS 
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The region of interest consists of 182,535 square km which account for more than 300-million-

pixel points with a spatial resolution of 30m x30m (see Figure 3.7). We analyzed one million 

random pixel observations for each time period so we could eliminate potential spatial biases. 

While implementing the pixel panel data, the total observations reached 4 million, one million per 

time period. As we wanted to examine the causal effects of road proximity on deforestation, we 

divided the sample into two parts. The first 500k pixels were located in areas that were deforested 

between 2001 and 2020. While the rest 500k pixels were selected in areas where no deforestation 

occurred. In the second part, we included only pixels in areas with forest cover higher than 30% 

based on Panlasigui et al. (2018). We excluded the pixels that had forest cover lower than 30% 

from our data set since no deforestation can arise in areas where no forest exists. 

 

Figure 3.7: Map of Cameroon. The green area highlights the Cameroon boundaries, while the yellow area indicates 

the region where the study was performed. 

Furthermore, we divided the Hansen et al. (2013) deforestation dataset into four time periods, so 

it can correspond with the derived dynamic roads. Thus, the first period consists of the accumulated 

forest loss for the years 2001 up to 2005. The second period is from 2006 to 2010, the third from 

2011 to 2015, and the last one from 2016 to 2020. Regarding the dynamic road data, the variable 

for the Euclidean distance changes every five years. In that way, we managed to correlate the five-
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year road evolution to the concentrated forest loss for the same period. We had to use five-year 

intervals as it was not possible to extract road segments for each year due to poor resolution and 

permanent cloud existence. 

We observed a substantial increase in deforestation after 2010 (Appendix A, Figure A1). 

Explicitly, in our sample, the deforestation points in 2005 accounted for 36,382 while in 2020 for 

269,869. Regarding the road network, the 2021 OSM road dataset accounted for 47.949 segments 

in the region of study. In 2005, we observed 37.508 parts. In 2010 there was an increase to 43.938 

roads, while in 2015 the derived roads were 44.296. Finally, in 2020 the number of roads was close 

enough to the benchmark as we managed to observe 46.413 segments (Appendix A, Figure A2). 
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4. Empirical Strategy 
 

This section elaborates on the econometric models that have been used in this study. Specifically, 

to identify the effect of the road infrastructure proximity on deforestation across time, we 

implemented a fixed-effect model, and two pooled Ordinary Least Square (OLS) models, one for 

static roads and one for dynamic roads. Moreover, we used two matched fixed-effects models 

derived from the propensity score matching approach, so we could replicate the methodology from 

Panlasigui et al. (2018) and compare the variation of the FSC certificate impact on deforestation 

between static and dynamic roads. It is also important to mention that we dropped the observations 

in the years after deforestation. In the table below, we introduce a brief description of the variables 

within the panel dataset and in the following models. 

Table 4.1: Description of the variables and summary statistics 

Variable Description Obs Mean St.Dev Min Max 

Deforestation 

Dummy for deforestation. Value 1 if 

deforestation occurred 3648804 0.13703 0.34388 0 1 

Dynamic 

Roads 

Euclidean distance to roads in km across years 

2005-2020 3648804 3.41379 5.06344 0 45.868 

Static Roads 

Euclidean distance to roads in km on year 

2021 3648804 2.54215 3.82198 0 36.544 

FSC 

Dummy for FSC certification. Value 1 if 

certified. In unbalanced certifications across 

years, the median was used as the value. 3648804 0.27933 0.16477 0 1 

Forest Cover Percentage of forest cover 3648804 80.2546 16.2546 0 100 

Water 

Proximity Euclidean distance to water bodies in km 3648804 43.8332 26.3244 0 112.46 

Cities 

Proximity Euclidean distance to cities in km 3648804 15.6771 13.1961 0 109.95 

Elevation Elevation in meters 3648804 606.062 152.994 0 1347 

Slope Slope in degrees 3648804 3.90884 3.14247 0 48.179 

Precipitation Annual average precipitation 3648804 1692.21 247.116 1297 2790 
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4.1 Fixed Effects 

To identify the effect of the proximity to roads on deforestation, it is quite significant to control 

for observed and unobserved factors that affect deforestation. In order to calculate these effects, 

we utilized the pixel panel dataset and estimated model (1) using both five-year fixed effects and 

pixel fixed effects. The fixed effect model is presented below. 

DYit= Rit β1 + γi + δt + εit   (1)  

The DY is a dummy variable that indicates if the forest pixel was deforested or not. Specifically, 

DYit = 1 if the pixel was deforested in the year t and DYit = 0 if it was not deforested in the year t. 

R stands for the Euclidean distance to road segments over time. γ and δ represent the fixed effects. 

Specifically, the γ accounts for the pixel fixed effects, while δ for the five-year fixed effects. The 

subscript i stands for pixel observation, while the subscript t represents the year. Last, the error 

term is defined by the ε. 

4.2 Pooled OLS 

We performed pooled OLS regressions for two main reasons. First, the time-invariant control 

variables drop in the fixed-effect model, so it was impossible to control for them. Second, we 

wanted to compare the difference between the dynamic and static roads. That said, we performed 

two pooled OLS regressions (2) and (3). The first one includes the Euclidean distance to roads 

which varies over time (dynamic roads) as the independent variable. However, pooled OLS ignores 

time and treats the dynamic roads as a continuous variable. On the second one, we applied as an 

independent variable the Euclidean distance to the static roads of 2021. Both models included a 

dummy of deforestation as a dependent variable and extra control variables. We included 

geographic variables like forest cover and elevation.  Distance variables such as Euclidean distance 

to cities and Euclidean distance to water were added as well. Again, we dropped the observations 

in the years after deforestation. 

DY= β0 + DynRoads β1 + X β2 + ε   (2)  

DY= β0 + StatRoads β1 + X β2 + ε    (3)  
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4.3 Propensity Score Matching – Matched Fixed Effects 

The analysis from Panlasigui et al. (2018) performs a propensity score matching approach to 

examine the effect of the FSC certificate. In particular, the method matches the certified pixels 

with uncertified control pixels based on specific characteristics such as distances and physical 

conditions. Regarding the distance to roads, they use static roads. In this study, we replicate the 

Panlasigui et al. (2018) propensity score matching, and we create two models. The first one 

includes static roads and the second one dynamic roads (see Appendix A, Table A1 and Table A2). 

The main idea is to identify if the effect of the FSC differs when we use the dynamic road dataset 

instead of the static one. 

For the Propensity Score Matching (PSM) approach, we randomly selected a sample of almost 1 

million pixels. The certified pixels accounted for 30,543. We used the nearest neighbour covariate 

matching without replacement in both models, as it was the most robust and significant. In that 

way, we managed to match the certified pixels with the same amount of control pixels and extract 

two datasets. Both datasets consist of the same treated (FSC) pixels. Regarding the control pixels, 

the first dataset is being matched by static roads, while the second one is by dynamic roads. Finally, 

we perform pixel and 5-year fixed effects on both datasets in order to examine if the effect of the 

FSC diverges significantly while the dynamic roads are being included. Last, since Panlasigui et 

al. (2018) used a greater area of Cameroon's surface, but also implemented their analysis between 

2000 and 2013, we expect our results to differ. 
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5. Results 

This section discusses the results of the models that have been used for the analysis. In particular, 

the fixed-effect model is being discussed in the first place, the pooled - OLS model follows, and 

finally the matched fixed effects outcome. 

5.1 Fixed Effects 

The results from the pixel fixed effects indicate that there is a negative correlation between distance 

to roads and deforestation. Specifically, Column (1) in table 5.1, points out that an increase of 1km 

in distance to a road generates a 0.79% decrease in the probability of deforestation. All coefficients 

in this model are statistically significant. However, these estimations do not account for trends 

over time and might therefore be biased. As soon as we include 5-year fixed effects, we observe 

opposite results for the Euclidean distance to roads. According to column (2), for every 1 km 

increase in distance from roads, the likelihood of deforestation increases by 0.98%. 

 

5.2 Pooled OLS 
 

Table 5.1 also illustrates the results from the Pooled OLS regressions. In particular, column (3) 

represents a pooled OLS containing all the control variables and the distance to the roads from 

2001 to 2020 which varies through time, while column (4) includes the distance to 2021 static 

roads instead. Both models produced similar results and almost the same coefficients. All the 

coefficients were reported statistically significant and along with the expected results. Specifically, 

the distance to the roads resulted in almost the same coefficient in comparison to the pixel fixed-

effects model.  

The dynamic roads model indicated a 0.80 % decrease in the likelihood of deforestation as the 

distance increases by 1km. While the static roads of 2021 implied a 0.89%. Regarding the rest 

control variables, we observed the following results (Appendix A, Table A3).  As the forest cover 

percentage increases, the probability of logging activity decreases, which can be explained, as the 

denser the forest becomes, the more difficult is to access and harvest. The same stands for the 

elevation, as the forest is located at a higher altitude, the accessibility options diminish. Concerning 

the distance to cities, again the coefficient is negative indicating that it is less possible to encounter 



 

19 

 

deforestation close to cities, as they lack forest cover. Last, the distance to the water suggests a 

positive association with deforestation, however, the percentage is quite small. 

Table 5.1: Results from fixed effects and ordinary least square (OLS) estimations on deforestation 

 (1) (2) (3) (4) 

 FE_Dynamic FE_Dynamic_Year OLS_Dynamic_Roads OLS_Static_Roads 

VARIABLES deforestation deforestation deforestation deforestation 

     

Dynamic Roads -0.0079*** 0.0098*** -0.00802***  

 (6.05e-05) (6.59e-05) (2.77e-05)  

Static Roads    -0.00892*** 

    (3.36e-05) 

Constant 0.164*** -0.052*** 0.317*** 0.314*** 

 (0.0002066) (0.000354) (0.00129) (0.00129) 

     

Observations 3,648,804 3,648,804 3,648,804 3,648,804 

R-squared 0.0027 0.274 0.039 0.036 

Number of ids 1,000,000 1,000,000   

Control Variables No No Yes Yes 

Pixel Fixed Effects Yes Yes - - 

5-Year Fixed Effects No Yes - - 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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5.3 Matched Fixed Effects 

The results from the pixel and 5-year fixed effects are illustrated in Table 5.2. In particular, the 

first two columns (1) and (2) account for the matched dataset using dynamic roads, while columns 

(3) and (4) include the 2021 static roads. In terms of the dynamic roads, again the results from 

pixel fixed effects and 5-year fixed effects differ. On the pixel fixed effects (1) the possession of 

the FSC certificate seems to increase the probability of deforestation by 5%. However, when we 

account for time trends (2), the certificate reduces the likelihood of logging by 1%. Both 

coefficients are statistically significant. We observe the same outcome for the static roads as well. 

Specifically, in the pixel fixed effects model (3), the deforestation risk is being increased by 4% if 

an area is certified. On the other hand, the 5-year fixed effects (4) indicate a negative correlation 

between FSC certification and logging. The ownership of the certificate leads to a decrease of 3% 

in the likelihood of deforestation. In conclusion, the most important remark of the matched fixed-

effects approach is that we identify different outcomes from the dynamic and the static roads’ 

models. Explicitly, when the static roads are being utilized in the analysis, the FSC certificate 

impact seems to be overestimated. Specifically, the effect is three times larger in comparison to 

the dynamic road dataset while we control for time trends. 

 

Table 5.2: Results from fixed-effects estimations on FSC after Propensity Score Matching 

 (1) (2) (3) (4) 

 FE_Dynamic FE_Year_Dynamic FE_Static FE_Year_Static 

VARIABLES Deforestation Deforestation Deforestation Deforestation 

     

FSC 0.0513*** -0.0100* 0.0394*** -0.0308*** 

 (0.00277) (0.00518) (0.00175) (0.00451) 

Constant 0.0226*** 0.000995 0.0218*** 0.00358* 

 (0.00139) (0.00311) (0.000874) (0.00189) 

     

Observations 61,086 61,086 61,086 61,086 

Number of ids 48,665 48,665 42,346 42,346 

R-squared 0.025 0.050 0.020 0.047 

Pixel Fixed Effects Yes Yes Yes Yes 

5-Year Fixed Effects No Yes No Yes 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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6. Discussion 

The present research used a fixed-effect model to calculate the impact of road proximity on 

deforestation and two different econometric models to identify the differences between dynamic 

and static roads. Our findings from the PSM and the fixed effects on the matched sample confirmed 

our assumption. In particular, following the methodology of Panlasigui et al. (2018), our study 

suggests that static roads overestimate the impact of the environmental policies, specifically the 

FSC certificate, in contrast to dynamic roads which implied a smaller effect. While utilizing static 

road data we cannot control for unobserved time-varying effects, so the FSC impact may be biased. 

Since the FSC certificate changes over time, it is important to include variables, such as road 

infrastructure data, that are time-variant. Additionally, our outcome highlights the need for 

accurate historical road panel data while we examine the effects on the ecosystem and want to 

tackle the challenges that arise. 

Furthermore, on the pooled OLS method, all the results agree with the existing literature. In this 

approach, we were able to compare the differences between the dynamic and static road effects on 

deforestation. Both datasets concluded into almost similar results and the outcome is in line with 

Pfaff et al. (2007), who argue that in a census tract of 100km the closest is a road segment to a 

forest area the higher the chance of deforestation.  

In the fixed-effects model, we encounter inconsistent results. For instance, in the pixel fixed effects 

model, we observe a negative association between Euclidean distance to roads and the likelihood 

of deforestation. Whereas, once we control for time trends the results differ, and indicate a positive 

correlation. The latter might have happened for several reasons: one reason may be that this study 

did not take into consideration road segments that have been abandoned during the examined 

period; another reason may be the limitation of the methodology to identify yearly road evolution. 

Thus, the selection of 5-year fixed effects instead may have affected the outcome. Additionally, 

the time lag between the road creation and the moment of deforestation may have also affected our 

results. 

Last, significant regions, such as the biggest city, Douala, were excluded from the research. As 

stated earlier, Cameroon is located in the Congo Basin region, an area that flourishes in rainforests. 

This means that persistent clouds were observed in the satellite imagery. Thus, it was extremely 
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difficult to extract clear patterns of road segments as the clouds made it almost impossible to detect 

them. This limitation may have led to potential spatial and selection bias, as a considerable number 

of roads have not been evaluated. Yet, our methodological approach complements other studies 

and underlines the relevance of research in the association between infrastructure expansion and 

environmental degradation. 

7. Conclusion 

This study applied remote sensing and machine learning techniques to produce a panel data set 

that did not exist until then. Utilizing public access satellite imagery, a road database for Cameroon 

was derived for the years between 2001 and 2020. The detection accuracy seemed to be quite 

successful. Despite the challenges, the findings agree with Meijer et al. (2018), who observe a 

substantial increase in road expansion in developing countries. In Cameroon, 10,441 new road 

segments were created from 2001 to 2021. 

Our main findings suggest that the inclusion of static roads in analyses tends to overestimate the 

environmental impact, while the dynamic road dataset provides more reliable conclusions. 

Regarding the impact of road infrastructure on the environment, the results from the 5-year fixed 

effects estimation indicate that there is a 0.98 % increased probability of deforestation as the 

distance between the forest and the road increases by 1km. Yet, while we do not control for time 

trends the effect becomes the opposite. 

Analyzing historical observations can help researchers and policymakers to estimate causal effects 

on the environment, prevent policy mistakes and market failures. As technology evolves, and 

access to innovative techniques, such as high-resolution satellite images, becomes easier we can 

improve our tools and techniques in order to make a more accurate analysis of the impact and 

evaluation of development trends. Despite the fact that this dissertation was limited in geographical 

scope and had methodological caveats, our results provide evidence on alarming trends in 

Cameroon and potentially in other developing economies that try to strike the right balance 

between investment in infrastructure and environmental sustainability. From the safe distance of 

academic institutions in Europe, our empirical analysis might seem far from the adverse economic 

reality of Cameroon. Yet, we are a step closer to establishing causal patterns between complex and 
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multidimensional trends. New methods and creative use of data sources can ameliorate policy and 

practice to protect the environment and achieve sustainable growth. 
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Appendix A 

Table A1. Average characteristics for matched controls using Propensity Score Matching with and 

without replacement. Moreover, comparison of land average characteristics of treatment and 

control groups for FSC pixels using dynamic roads. 

Characteristics  
Treated 

(FSC) 
All Control 

PSM with 

replacement 

PSM without 

replacement 

Distance to dynamic roads  4.40 4.07*** 4.92*** 4.88*** 

Distance to cities  23.85 18.05*** 24.07** 23.98 

Elevation  624.21 601.4*** 634.83*** 635.7*** 

Precipitation 1684.1 1693.6*** 1662.8*** 1662.4*** 

Slope  4.082 3.976*** 4.04** 4.05 

East  0.63 0.59*** 0.67*** 0.67*** 

South  0.36 0.40*** 0.32*** 0.32*** 

Mean Bias  13.1 6.8 6.5 

* Note: *p<0.1, **p<0.05, ***p<0.01 

Table A2. Average characteristics for matched controls using Propensity Score Matching with and 

without replacement. Moreover, comparison of land average characteristics of treatment and 

control groups for FSC pixels using 2021 static roads. 

Characteristics  
Treated 

(FSC) 
All Control 

PSM with 

replacement 

PSM without 

replacement 

Distance to static roads  3.18 3.09*** 3.24** 3.27*** 

Distance to cities  23.85 18.05*** 23.85 23.86 

Elevation  624.21 601.4*** 631.52*** 632.79*** 

Precipitation 1684.1 1693.6*** 1669.8*** 1667.5*** 

Slope  4.082 3.97*** 4.03** 4.03** 

East  0.63 0.59*** 0.63 0.64** 

South  0.37 0.40*** 0.36 0.36** 

Mean Bias  12.4 2.4 3 

* Note: *p<0.1, **p<0.05, ***p<0.01 
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Table A3. Pooled OLS Regressions with control variables 

 

 (1) (2) 

 OLS_Dynamic_Roads OLS_Static_Roads 

VARIABLES Deforestation deforestation 

   

Dynamic Roads -0.00803***  

 (2.77e-05)  

Static Roads  -0.00892*** 

  (3.36e-05) 

FSC -0.0673*** -0.0670*** 

 (0.000616) (0.000618) 

Forest Cover -0.00115*** -0.00115*** 

 (1.25e-05) (1.26e-05) 

Water Proximity 0.000468*** 0.000451*** 

 (7.15e-06) (7.19e-06) 

Cities Proximity -0.00186*** -0.00219*** 

 (1.21e-05) (1.18e-05) 

Elevation -8.26e-05*** -7.54e-05*** 

 (1.37e-06) (1.38e-06) 

   

Constant 0.317*** 0.314*** 

 (0.00129) (0.00129) 

Observations 3,648,804 3,648,804 

R-squared 0.039 0.036 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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’ 

Figure A1: Deforestation evolution in Cameroon over time 
 

 

 
 

Figure A2: The number of detected roads on each time period 

 

 


