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Abstract

With the potential to help tackle climate change, air pollution and oil dependency,

electric vehicles have been embraced by governments worldwide as a viable alternative

to internal combustion engine vehicles. Purchase tax incentives are among the most

popular instruments used to stimulate the electric vehicle uptake in many jurisdictions.

This present research provides a theoretical framework based on random utility theory to

estimate the marginal welfare impact of these taxes. Based on vehicle registration data

in the Netherlands during 2000-2017, this study shows that the purchase tax exemption

offered by the Dutch government to private battery electric vehicles resulted in a net

welfare loss of up to e130 million in 2017, or e800 per car. The analysis presented in this

paper focuses on the environmental externalities associated with the vehicle production

and end-of-life phases, which have been ignored in previous impact evaluations of similar

financial incentives for electric vehicles. The paper provides yet another perspective to

examine the impact of the vehicle purchase tax incentives and calls for a reconsideration

of using these instruments to promote the consumer adoption of electric vehicles.

Keywords – electric vehicles, welfare analysis, tax incentives
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1 Introduction

Despite a sharp contraction in the global car sales amid the COVID-19 pandemic, electric

vehicles (EVs1) remain a growth market with over 3 million units sold in 2020, quadrupling

in just five years.2 EVs have increasingly been embraced as a viable alternative to fossil-fuel

cars, a solution to mitigate the transport sector’s contribution to global climate change,

local air pollution and oil dependency. The European Union, for example, aims to have at

least 30 million zero-emission cars on its roads by 2030. This is a step toward curbing

the carbon footprint of the transport sector by 90 percent by 2050, as outlined in the

European Green Deal (European Commission, 2020). Over the past decade, governments

across the world have offered generous tax cuts to accelerate the market diffusion of EVs.

In many places, these incentives have proved effective in boosting the share of EVs in the

passenger car fleets. However, their cost-effectiveness to reduce CO2 emissions and their

net social benefits can be questionable.

This present research investigates the welfare effects of the vehicle purchase tax (BPM)

exemption for battery electric vehicles (BEVs) offered by the Dutch government. The

paper develops a theoretical framework based on random utility theory (McFadden,

1986) to measure the marginal welfare effect of the vehicle purchase tax, including the

environmental costs from vehicle production and end-of-life phases. Based on new private

car registration data from 2000 to 2017 in the Netherlands, the empirical analysis of this

paper shows that the social welfare loss in 2017 could reach between e30.7 million and

e130 million, or between e190 and e800 per car—the wide range is attributable to the

large divergence between the lower and upper levels of the environmental prices of CO2

and air pollutants. This welfare loss is a result of the significant environmental costs

during the vehicle production and end-of-life phases, which to the best of my knowledge,

have not been incorporated in the impact evaluation of EV tax incentives in the existing

literature. These external costs do not vary with vehicle use. Whether a car is used for ten

or fifteen years, or whether it is driven daily or twice a week, the environmental costs from

this car’s production and end-of-life phases remain unchanged. Therefore, in theory, these

1The abbreviation "EV" in this paper refers to both battery electric vehicles (BEVs) and plug-in
hybrid electric vehicles (PHEVs).

2https://www.theguardian.com/environment/2021/jan/19/global-sales-of-electric-cars-accelerate-fast\
-in-2020-despite-covid-pandemic

https://www.theguardian.com/environment/2021/jan/19/global-sales-of-electric-cars-accelerate-fast\-in-2020-despite-covid-pandemic
https://www.theguardian.com/environment/2021/jan/19/global-sales-of-electric-cars-accelerate-fast\-in-2020-despite-covid-pandemic
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externalities should be internalized by the vehicle purchase tax, which penalizes vehicle

purchases, as opposed to vehicle use. The calculation for this part of the marginal welfare

effect shows that a e1,000 increase in the purchase tax on BEVs in the Netherlands will

increase social welfare by approximately e44 - 90 million.

The remainder of this paper is organized as follows. The next section provides a comparison

in terms of externalities between EVs and their conventional counterparts - the internal

combustion engine vehicles (ICEVs). Section 2 also presents an overview of the literature

assessing the impact of EV purchase incentives. Section 3 elaborates on the main research

question of this present study, and Section 4 presents the analytical framework to answer

this research question. Section 5 describes the data and the empirical methodology to

quantify the welfare effects of the vehicle purchase tax exemption. Section 6 discusses the

results and caveats of the present study as well as recommendations for future research.

Section 7 concludes.
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2 Back ground & Literature review

2.1 An overview of EVs vs ICEVs in externalities

Road transport incurs significant externalities in terms of congestion, accidents, noise

nuisance, air pollution and climate change that are often difficult to internalize fully.

Quantifying these external costs is complex, because they are under the influence of

various factors related to the number of potentially affected people, such as driving time

of the day (day or night, rush or non-rush hours) and driving location (urban or rural).

The magnitudes of these externalities also depend on the size and weight of the vehicles,

and more importantly, their fuel types (gasoline, diesel and electricity).

2.1.1 Congestion

Congestion externality occurs when an additional vehicle reduces the speed of the other

vehicles using the same road, thus increasing their travel time. This externality is

estimated to make up the largest share of the external costs of a vehicle (over 65%

according to Jochem et al. (2016)). The main component of this externality—the value

of travel time loss, varies across drivers’ income and their travel purposes, among others.

Obtaining a reasonable estimate for this cost is thus challenging. Using different area

model specifications, CE Delft (2019) estimates that the car marginal congestion cost

in the Netherlands ranges from e0.19 per vehicle-kilometer (vkm) in a near-capacity

motorway in an inter-urban area to e0.89 per vkm in an over-capacity urban non-trunk

road. However, as an additional car entering a road, be it powered by fuel or electricity,

incurs the same congestion cost on other cars, EVs fare similarly to their conventional

counterparts in terms of congestion externality.

2.1.2 Accidents

With regard to traffic accidents, EVs might have a higher marginal external cost than

their conventional counterparts, because they are typically heavier—around 5% to 35%

heavier than equivalent ICEVs (OECD, 2020) and in a multi-vehicle crash, a heavier car

is likely to increase the fatality and injury risks (Van Ommeren et al., 2013). Nevertheless,
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the relationship between vehicle weight and traffic safety is subject to numerous other

factors and thus remains debated. On the one hand, EVs can be associated with higher

accident risk to cyclists and pedestrians, given their quietness when running at low-speed

(Stelling-Kończak et al., 2015). However, this accident risk is minimal, based on empirical

findings from a field study conducted in Berlin by Cocron et al. (2011). On the other

hand, less severe accidents at top speeds are more likely associated with EVs because

they cannot reach the maximum speeds of gas-guzzlers, or because EV drivers may be

reluctant to drive fast to save energy. Similar to congestion externality, CE Delft (2019)

differentiates the marginal external accident cost estimates by driving location and road

condition. The estimates for the EU-28 ranges from e-cent 0.25 per passenger-kilometer

(pkm) on motorways to e-cent 1.4 per pkm on urban roads. These estimates are the same

for EVs and ICEVs.

2.1.3 Noise nuisance

When it comes to noise nuisance, EVs are often thought to be better than conventional

cars. However, in the usual traffic, this externality from EVs does not differ significantly

from gas-guzzlers. According to RIVM (2010), at low speed, an EV can be 10 times less

loud than an equivalent ICEV, but at high speed, the difference is insignificant, as the

noise coming from the interaction between the tyres and road dominates the propulsion

noise. Jochem et al. (2016) argue that the quiet feature of EVs becomes useful only in

urban traffic, during nighttime and at low speed. CE Delft (2019) gives the same marginal

external noise cost estimates for EVs and ICEVs. These estimates for the EU-28 range

from e-cent 0.004 per pkm in dense traffic during the daytime in rural areas to e-cent 2.1

per pkm in thin traffic in the nighttime in urban areas.

2.1.4 Environment: air pollution and climate change

2.1.4.i Vehicle-use phase

With respect to environmental externalities, EVs appear to trump conventional cars during

the vehicle-use phase, since EVs produce no tailpipe emissions of CO2, NOx, particulate

matter (PM2.5 and PM10) and other toxic air pollutants generated from the combustion

of fossil fuels. Nevertheless, EVs produce more particulate non-exhaust emissions from
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the wearing of tyres, brakes, and roads and the re-suspension of dust, compared with

typically lighter ICEVs, as these non-exhaust emissions are influenced by vehicle weight.

A recent report, OECD (2020) points out that these non-exhaust emissions have surpassed

exhaust emissions to become the dominant source of particulate matter in Europe’s road

transport, as its fleet has become more electrified. This study estimates that heavier EV

models may emit up to 8% more PM2.5 relative to equivalent ICEV models. Simulations

under the scenario of low adoption of EVs show that global non-exhaust PM2.5 will rise

by 53.5% in 2030 compared with its 2017 level. These non-exhaust emissions have so far

remained unregulated.

2.1.4.ii Well-to-tank

For ICEVs, most greenhouse gases (GHG) and air pollutants are emitted during the

vehicle-use stage (i.e. the tank-to-wheel or TTW). Meanwhile, for BEVs, most emissions

occur during electricity production stage (i.e. the well-to-tank or WTT). The kind

of electricity that goes to charge EVs’ batteries is critical to determining their carbon

footprints in the well-to-wheel (WTW) stage which combines the WTT and TTW stages.

Moro and Lonza (2018) provide the WTW estimates for a representative EV in all

European countries, taking into account their different electricity generation mixes. The

estimated GHG emissions of a typical BEV during the WTW stage stand around 90 gram

CO2-equivalent per kilometer (gCO2eq/km) in the Netherlands where natural gas and coal

generation dominate (2013 data). This estimate is only 10 gCO2eq/km in Sweden, where

most electricity comes from nuclear and hydro-power, but 235 gCO2eq/km in Latvia,

an importer of coal-generated electricity from neighboring countries. For comparison

with ICEVs, the GHG emission level during the WTW stage is 145 gCO2eq/km for a

typical diesel vehicle and 178 gCO2eq/km a gasoline car. These figures demonstrate the

importance of the electricity generation mix to determine the environmental benefits of

EVs during the WTW phase. Driving EVs yields no environmental benefits in Latvia, but

a great deal in the Netherlands and even more so in Sweden.

Although the rising share of renewable sources in electricity mix can reduce the WTT

emissions of EVs, more EVs on the roads will put extra pressure on the electricity demand.

Global electricity demand is predicted to increase six-fold from 2019 level if EVs’ share of

the global fleet grows to 7% by 2030 (IEA, 2020a). The magnitude of the rise in electricity
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demand is by no means non-negligible, but it is important to consider this rise not only in

absolute terms, but also in peak loads caused by EV charging (Kapustin and Grushevenko,

2020). Charging activity often takes place at the start of the working day, coinciding with

the morning peak of electricity consumption, or in the evening at home, right during the

evening peak. This raises concerns over the stability of the electricity grid, which is prone

to even more volatility amid the rising share of renewable sources in global electricity

generation mix.

The more reliance on renewable generation necessitates vast energy storage capabilities to

cover demand in peak hours. This is where much hope has been put in EVs to be used as

not only a means of transport but also an energy storage that can feed energy back into

the grid through Vehicle-To-Grid (VTG) systems. Although the feasibility and economics

of VTG remain replete with uncertainties (Shirazi et al., 2015), one thing for sure is that

the system only works on a large-scale basis with a high number of EVs. This implies

that each EV can potentially generate a positive externality associated with technology

innovation and energy security, which even the most fuel-efficient ICEV cannot.

2.1.4.iii Vehicle production and end-of-life phases

In addition to the electricity generation process, EV production stage has considerable

environmental impacts. Compared with conventional cars, EVs require more copper,

nickel, critical raw materials and rare earth elements, the extraction of which is energy-

intensive and likely to cause adverse human health and ecosystem impacts (EEA, 2018).

The manufacturing of lithium-ion battery packs is mainly responsible for the higher

environmental impacts of EVs within the vehicle-production phase (Kim et al., 2016).

As roughly half of emissions associated with battery manufacturing comes from the

electricity used, this environmental impact depends on the electricity generation mix of

the manufacturing place of the batteries (ICCT, 2018) . European EVs mostly have their

batteries manufactured in Japan and South Korea, where the electricity mix is similar

to the European average. In the future, a greater share of batteries may come from

China where the mix remains heavily reliant on fossil fuels (ICCT, 2018). Kim et al.

(2016) estimate that BEV production results in 1.3-2 times more GHG emissions than a

comparable conventional car. Likewise, Rangaraju et al. (2015) find that the emissions of

NOx , SO2 and PM from EV production can reach 1.5-2.5 times higher than ICEVs. Since
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all the steps within the vehicle-production phase (i.e. raw material extraction, vehicle

component production and assembly) take place across many different countries with

varying levels of stringency with respect to environmental regulations and taxation, these

environmental impacts may be only partially, if not at all, taxed .

During the end-of-life phase, the environmental impacts of EVs and ICEVs do not differ

considerably. Most of the life-cycle assessments (LCA) suggest that this phase is not a

large contributor to the vehicle life-cycle impacts (EEA, 2018), although research focused

on this phase is highly sensitive to assumptions about the potential for reusing and

recycling BEVs. These are the areas where data remain distinctly lacking.

Assessing all the above externalities in the context of Germany, Jochem et al. (2016)

conclude that EVs only offer some advantages in climate change, air pollution and noise

reduction compared with conventional cars in congested inner-cities where the current

European policies seek to get rid of cars. Noting that congestion dominates the external

costs of a vehicle, the authors question the justification of a rising number of EVs on the

road, which further intensifies transport externality. Similarly, Holtsmark and Skonhoft

(2014) raise concerns over the high EV uptake per capita in Norway, particularly the

failure of EVs to substitute ICEVs: citizens may purchase EVs as second cars and even

worse, use EVs instead of public transportation.

In all, the above discussion offers an extensive, albeit not comprehensive, overview of how

EVs compare with ICEVs in terms of externalities, with a focus on the environmental

impacts. Most LCAs conclude that BEVs have lower GHG emissions than ICEVs

throughout their lifespans (EEA, 2018). Taking a life-cycle oriented view covering the

impacts of not only the vehicle-use phase, but also the production and end-of-life phases

is critical to draw a valid comparison.

2.2 Policy instruments to promote EV uptake

Despite the recent rise in new sales, EVs still hold a humble share in the current global

car fleet—only 1% of total stock in 2019 (IEA, 2020b). Diffusing EVs into the market

has encountered various technical and economic barriers such as limited driving range

and high purchase prices. According to a meta-analysis of studies using stated preference

data (Dimitropoulos et al., 2013), a BEV with a 160 km range must be priced US$17,000
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lower to be competitive with a comparable gasoline vehicle. Meanwhile, the availability of

charging stations in public venues and along highways in most countries, except Norway

and the Netherlands, remains inadequate. While the fast-charging facilities are slowly

developed, EVs are at another disadvantage, as they take considerably more time to

charge, compared with a few minutes to fill up a gas tank.

To increase the attractiveness of EVs, governments worldwide have intervened with a suite

of demand-pull incentives. For example, EVs receive preferential access to high-occupancy

vehicle lanes and parking spaces in several U.S. states, to bus lanes in Norway and

license plates in Chinese provinces. In additional to these non-financial incentives, subsidy

programs that vary in design, scope and magnitude have also been in place to stimulate

EV adoption. In the U.S. and Canada, rebates on purchase prices, income tax credits,

toll waivers or parking fee exemptions have been popular forms of subsidies to promote

EV uptake.

Over the past recent years, the Dutch government has invested substantially in charging

facilities, making the Netherlands currently in the global top 2 in public charging

deployment per vehicle.3 By 2030, only zero-emission passenger cars can be sold in

the country. BEVs have been exempt from motor vehicle tax (MRB) and purchase tax

(BPM) since 2010 and will remain so until 2024 at the earliest. Company BEVs, typically

owned by leasing companies and provided to employees by their employers, are subject to

an additional income tax rate (bijtelling) of 4% of their net list price, instead of 22% as in

the case of non-BEV cars, with a cap on the first e50,000 of the vehicle’s net list price in

place since 2019. A subsidy scheme in the Netherlands gives e4,000 for purchasing or

leasing a new EV and e2,000 for a used one starting from July 2020.

2.3 Impacts of EV financial incentives

A rich body of literature has examined the cost-effectiveness and welfare effects of EV

financial incentives, using stated preference (SP) and revealed preference (RP) data from

various car markets.

Using panel data of quarterly EV model sales in the U.S. metro areas during 2011-2013,

Li et al. (2017) investigate the federal income tax credit’s cost-effectiveness, defined as

3https://theicct.org/sites/default/files/publications/EV-charging-metrics-aug2020.pdf

https://theicct.org/sites/default/files/publications/EV-charging-metrics-aug2020.pdf
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public dollar costs per EV sold. This study focuses on the indirect network effects between

public charging station availability and EV sales to isolate the effect of public investment

in charging facilities from the effect of public spending on the tax credit program, using

instrumental variables (IV). In particular, the authors instrument for the number of public

charging stations with the number of grocery stores and supermarkets, arguing that while

these venues do not have a direct impact on EV sales, they are well related to charging

points, as charging facilities tend to be installed near supermarkets. To instrument for

the cumulative sales of EVs, the authors use a set of current and past annual gasoline

price variables, which they argue to be exogenous to charging station deployment, whereas

related to EV purchases: in areas where gasoline are much more expensive than electricity,

consumers would gain more from fuel cost savings by switching to EVs and thus have

stronger incentives to buy EVs. Their IV regression shows that a 10% rise in the number

of public charging stations would boost EV sales by about 8%, while a 10% rise in EV

stock would boost charging station deployment by only 6%. Their simulation of the tax

credit program finds that the almost $1 billion program contributed to 40% of the total

EV sales, but the indirect network effect was responsible for a significant 40% of that

growth in sales. Due to the strong indirect network effects on EV demand and the low

level of price elasticity among early adopters, the authors suggests that if the $1 billion

were used to build charging stations in lieu of subsidizing EV purchase, the number of

EV sales would have doubled. Therefore, the public spending’s cost-effectiveness would

double as well.

Another study on the cost-effectiveness of EV tax incentives, Azarafshar and Vermeulen

(2020) make use of the variation in the rebate rates across time and Canadian provinces

to quantify the causal impact of Canada’s EV rebate program. The authors employ a

eneralised Linear Model regression on panel data of monthly vehicle registrations between

September 2012 and December 2016. The regression includes a set of fixed effects to

account for the heterogeneity in provincial preferences for vehicle models, the availability

of models across time, and consumers’ time-varying preferences for vehicle models. Using

the estimated demand parameters, the authors predict the EV sales that would have been

made in the absence of the rebates, and find that only 35% of EV purchases made during

the studied period could be attributed to the rebate program. Using the counterfactual

estimates together with data on the models’ fuel efficiency, average lifespan of cars and
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distance driven in Canada, the authors calculate how much gasoline was saved thanks to

the rebates and convert this saving into CO2 reduction. The rebate cost per ton of CO2

savings over 10 years stands around C$700 for BEVs and C$850 for PHEVs. Noting that

the Canadian government’s cost of carbon is C$30 per ton, the authors conclude that the

rebate program is not cost-effective.

Both the above studies employ a vehicle choice model based on the standard logit framework

set out by Berry (1994) based on a strong assumption of the independence of irrelevant

alternatives (IIA). In an attempt to relax the IIA assumption, Sheldon and Dua (2019)

employ a mixed logit model on a cross-sectional data of new vehicle purchases in 2015.

This dataset is split into 90 subgroups based on observed consumer characteristics (i.e.

income, education, age, environmental attitudes and geographical residence). Random

coefficients, whose values within a subgroup follow a certain distribution, are introduced

to four selected vehicle attribute variables in the estimating equation. The authors then

use the estimated parameters to establish the own-and cross price elasticity of demand for

different models and predict their market shares at different level of subsidies. Sheldon

and Dua (2019) find that 17% of EV sales are attributable to the federal tax credits,

which is much lower than the 40% found in (Li et al., 2017).

Xing et al. (2021) also employ the mixed logit model in another assessment of the cost-

effectiveness of the US’ federal income tax credits for EV purchases. In addition to

the market-level sales data during 2010-2014, the authors make use of second-choice

data (i.e. consideration set) from a survey of new EV car buyers. This dataset helps

identify unobserved consumer preferences conditional on observed consumer characteristics.

Following Berry et al. (1995)’s mixed logit model, Xing et al. (2021) introduce four random

coefficients to allow for unobserved preferences for four selected vehicle attributes, which

relaxes the IIA assumption. Running counterfactual simulations based on their estimated

vehicle choice model, the authors find that roughly 70% of consumers would have bought

EVs even without the tax credits. These consumers might have placed a higher value

on the environment, or simply could afford these more expensive vehicles. They are the

so-called "non-additional" or "free-riders" (Chandra et al., 2010), as they receive windfalls

from the tax credits without having to change their behaviors, thus adding cost to the

policy. Xing et al. (2021) suggest that to be more cost-effective, the tax credits should



2.3 Impacts of EV financial incentives 11

target low-income households.

The above papers assessing EV tax incentives from the cost-effectiveness perspective

focus on the public dollar costs per vehicle induced or per ton of CO2 reduced. Their

recommendations include spending more on charging facilities (Li et al., 2017), targeting

low-income households (Xing et al., 2021) or those that drive a lot, live in rural areas,

or currently own old and polluting cars (Sheldon and Dua, 2019). The cost-effectiveness

analysis takes as given that the government will spend an amount of public money on

one or more instruments to achieve a goal. From a political perspective, this is sensible

and even essential. This type of analysis compares the costs of these instruments, but

does not question the goal. Welfare analysis, however, questions the optimality of the

goal. This type of analysis investigates how the instruments will result in a net gain or

loss in consumer surplus, producer surplus, government revenue and externalities. From

an economics perspective, welfare analysis is more extensive. It is likely to yield different

conclusions from cost-effective analysis, particularly when the goal is not socially optimal.

However, which approach is more valuable from the political viewpoint is not definite.

Holland et al. (2016) study the welfare effects of the U.S.’ federal purchase subsidy in terms

of environmental benefits throughout vehicle lifespans. The authors define net welfare from

buying a car as the sum of expected utility less expected pollution damage, and builds

a framework to obtain a “second-best” subsidy which equals the difference in marginal

damages per mile driven by a gasoline vehicle and a comparable EV. Incorporating spatially

detailed emissions, the study shows that the environmental externalities from driving EVs

are spatially heterogeneous, thereby advocating for a regionally differentiated EV policy

with higher subsidy in urban areas and lower subsidy—or even tax in rural remote places.

The authors argue that only in these urban areas would driving an EV generate a net

welfare gain. This argument is an interesting divergence from the recommendation by

Sheldon and Dua (2019) who focus on the cost-effectiveness of the same program and

advocate offering more incentives to EV drivers in the rural areas. Overall, a second-best

nationwide subsidy for an EV, according to Holland et al. (2016), is a tax - not a subsidy -

of US$427. The authors also find that these environmental externalities are heavily driven

by local air pollution. If the environmental benefit is restricted in CO2 reduction only, a

subsidy would be justified.
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Another welfare analysis in terms of environmental benefits, Dimitropoulos et al. (2016)

evaluate the Dutch bijtelling incentives for EV company cars. The study uses SP data

from a survey on lease drivers. The advantage of this type of data compared with revealed

preference data are four-fold. First, the choice set stays limited with a tractable number

of alternatives designed by the researchers. Second, EV-specific attributes such as driving

range and recharging time, usually excluded in RP data, can be included in SP survey

data, enabling the estimation of the willingness to pay for these attributes. Third, the

attributes of the alternatives stay orthogonal by design, avoiding the complex IV method

to address the multicollinearity between vehicle attributes and price as in Berry et al.

(1995); Adamou et al. (2014) for instance. For the vehicle choice estimation, Dimitropoulos

et al. (2016) use the panel latent class model which relaxes the IIA assumption of the

traditional logit model and the distributional assumption of the random parameters in

the mixed logit model. The latent class model assigns everyone with a probability to a

class with a certain preference. The latent class model also enables an easier computation

of consumer surplus at the individual level, which captures the social benefit associated

with the tax base rate reduction. It also helps calculate the implicit subsidy per company

car, which captures the social costs. The authors find that the social costs outweigh the

social benefits as a result of the reduced bijtelling for BEVs, resulting in an annual welfare

loss of e42 – 95 million.

Albeit various advantages, SP data are prone to several biases such as hypothetical bias,

strategic bias or starting pointing bias, as they come from choice experiments (Brown,

2019). Studies solely based on SP data are, therefore, not apt for forecasting purposes

and to some extent, for policy impact evaluation due to scaling problems. A more recent

study on the impact of the CO2-dependent bijtelling on the Dutch company EV market,

van Eck et al. (2019) make use of RP data on vehicle registration during 2011-2016 and

lease car driver characteristics. Identifying 196 unique combinations of brand, model and

fuel type of vehicles in the dataset, the authors assume each consumer is faced a choice

set of 196 alternatives. Their vehicle choice model, based on a multinomial logit model,

shows that the preferential bijtelling rate for EVs led to fewer petrol cars and more EVs,

diesel and hybrid electric vehicles (HEVs) sold on the lease car market over the studied

period. They conclude that this policy was effective but not a cost-effective instrument

to reduce CO2 due to substantial foregone tax revenues. They point to the unintended
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consequence of local air pollution, arguing that incentives solely based on vehicles’ CO2

emission level can be a subsidy for diesel cars in disguise.

Overall, there is still much room in the literature for welfare analysis of EV tax incentives

that not only evaluate their CO2 impacts, but also other environmental impacts such

as air pollutants. Given many financial incentives are offered at the point of sale (ie.

purchase tax, purchase rebates), the environmental impacts in question should include

those from the vehicle-production and disposal phases, which do not vary by vehicle use.

In the context of the Netherlands, the private car market, which accounts for roughly the

same number of annual new car registrations as company cars (BOVAG & RAI Vereniging,

2020), would also benefit from further studies.
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3 Research question

This present study investigates what are the net welfare gains from the Dutch zero vehicle

purchase tax (BPM) for BEVs.

Over the past decade, the BPM policy has experienced several changes. Before 2010,

BPM was around 40% of the net list price—price after BTW (the Dutch value added

tax). From 2010, BPM followed a step function of vehicle’s CO2 emission level (gram per

kilometer, g/km) plus 27.4% of the net list price. This figure went down to 19% in 2011

and 11% in 2012. Since 2013, the BPM has been solely determined by type-approval CO2

emissions (Belastingdienst, 2020). BEVs have been exempted from BPM since 2010.

Unlike the motor road tax (MRB) which varies with the vehicle ownership duration (in

addition to its weight) or the fuel tax which varies with the vehicle use, BPM is a one-off

tax on the purchase of a vehicle. Therefore, the social benefits and costs associated with

this tax do not vary with vehicle use. The environmental costs that this tax should

internalize are the one-off emissions from the vehicle-production and disposal phases. The

benefits are the gain in the consumer surplus as lower prices allow more people to buy

these vehicles.

Comparing the social benefits and costs associated with the BPM tax exemption for

BEVs is relevant to economics, the discipline that advocates for the use of tax to address

externality. In this present research, I focus on the externalities that the vehicle purchase

tax seeks to internalize—that is, the environmental impacts from vehicle production and

end-of-life phases. This is the key difference between this present research and earlier

studies. As discussed in Section 2, the externalities of different vehicle types vary across

different phases, with benefits of EVs realized most during the vehicle-use phase. Noting

that the BPM is imposed at point of sale, would the BPM exemptions for BEVs be

welfare-enhancing after all?

This research question is highly relevant to society as well. Tax reduction and exemption

is a loss of government income. In 2020, this loss amounted to nearly e340 million in the

Netherlands (Government of the Netherlands, 2020). Quantifying the welfare impacts

of this tax exemption for BEVs is instructive for policymakers to choose an appropriate

instrument to deliver more social benefits than costs.
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4 Analytical framework

The analytical framework to quantify the welfare effects of EV tax incentives in this paper

relies on random utility theory (McFadden, 1986). Consumer n is faced with a choice

set of different vehicle types i and assumed to purchase the vehicle type j that gives the

greatest utility Unj. This utility level consists of a deterministic part Vnj and unobserved

part εnj . Consider the case of a representative consumer, suppressing the subscript n, the

utility associated with buying vehicle type j becomes

Uj = Vj + εj, (4.1)

with the deterministic utility:

Vj = αpj + θτj +X ′
jβ

(with α, θ < 0).
(4.2)

Parameters α and θ denote the marginal disutilities of price and tax respectively, and β

the marginal utility of vehicle attributes such as horsepower, size, brand, fuel consumption

among others. X ′
j is a vector of relevant attributes.

The vehicle purchase tax is denoted as τj, which in this framework, is independent of the

vehicle price pj. This has been the case with the Dutch BPM since 2010 when this tax

rate started being CO2-dependent, as opposed to being solely percentages of the vehicle

net list price. From 4.2 , the partial derivative of Vj with respect to τj is

∂Vj

∂τj
= θ. (4.3)

Another assumption inherent in this framework is the independence of the vehicle price

with respect to the vehicle tax. This assumption implies that manufacturers do not increase

their EV prices in an attempt to reap windfall from the tax cuts. Full pass-through

of vehicle tax benefits to consumers is a plausible assumption as evidenced from the

literature on the incidence of vehicle incentives. For example, in a study on tax incentives

for Toyota Prius, comparing transaction prices just before and after each time the tax
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changed, Sallee (2011) finds that there were minimal movements in the transaction prices

less the subsidy amounts. Although there could be gradual changes, the majority of the

subsidies, as Sallee (2011) explains, might have passed through to consumers because

during the nascent adoption stage of new technology, automakers would want to keep the

prices low to attract more consumers and gain initial market shares. In another study

using transaction-level data, Muehlegger and Rapson (2018) also find that consumers

captured around 80-90% of California’s subsidy program for new EV purchases by low-

and middle-income consumers. In case the assumption of no incidence of vehicle incentives

is violated, the (cost-) effectiveness of the EV policy would be overestimated. However,

this violation would not affect the welfare analysis of the policy.

The term εj in 4.1 is the difference between Uj - the utility consumer obtains by purchasing

vehicle type j and Vj - the utility the researcher measures using observed attributes of

vehicle type j. The distribution of εj is assumed to be of type I extreme value (Train,

2009), which leads to the well-known logit formula:

Pj =
eVj

∑

i e
Vi
. (4.4)

This formula gives the probability of vehicle type j being selected among all available

vehicle types i. This probability equates to the market share of vehicle type j. The partial

derivative of the market share of vehicle type j with respect to the deterministic utility

associated with buying it is

∂Pj

∂Vj

=
eVj

∑

i e
Vi

−

(

eVj

∑

i e
Vi

)2

= Pj (1− Pj) . (4.5)

From 4.3 and 4.5, the marginal effect of vehicle tax τj on its own market share is dependent

on the market share itself:

∂Pj

∂τj
=

∂Pj

∂Vj

∂Vj

∂τj
= Pj (1− Pj )θ. (4.6)

I assume the vehicle market to be perfectly competitive and the supply of different vehicle

types perfectly elastic. This is a reasonable assumption, given the small size of the Dutch

car market (Dimitropoulos et al., 2016) Also, it is consistent with the previous assumption
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of zero incidence of EV tax benefits. This assumption implies zero producer surplus, and

thus social welfare is the difference between total consumer surplus and total external

cost.

Following (Small and Rosen, 1981), given the standard logit assumptions, the expected

consumer surplus of the representative consumer associated with the set of alternatives

i is the logarithm of the denominator of the choice probability. This consumer surplus

conveniently takes a closed form:

CS =
1

α
ln

∑

i

eVi . (4.7)

With N consumers in the market, total consumer surplus becomes TCS = N ∗ CS =

N
α
ln

∑

i e
Vi . Taking the partial derivative of the total consumer surplus with respect to

the utility of choosing vehicle type j, we have

∂TCS

∂Vj

=
N

α

eVj

∑

i e
Vi

=
N

α
Pj. (4.8)

From 4.3 and 4.8, the marginal effect of vehicle tax τj on total consumer surplus is a

function of Pj, or the market share of vehicle type j:

∂TCS

∂τj
=

∂TCS

∂Vj

∂Vj

∂τj
=

N

α
Pj(θ) =

θN

α
Pj. (4.9)

With N consumers in the market, there are Qj = NPj vehicles of type j being purchased.

From 4.6, the marginal effect of τj - the tax on vehicle type j on Qj - the quantity of

purchased vehicles of the same type becomes

∂Qj

∂τj
= N

∂Pj

∂τj
= NP j (1− Pj)θ. (4.10)

The external cost of vehicle type i is assumed to depend on its quantity ci (Qi ). Therefore,

the total external cost associated with the set of alternatives i is TEC =
∑

i ci (NP i ).

The marginal effect of vehicle tax τj on total external cost associated with the set of

alternatives i is
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∂TEC

∂τj
=

∂cj

∂Qj

N
∂Pj

∂τj
+
∑

i 6=j

∂ci

∂Qi

N
∂Pi

∂τj
. (4.11)

This equation breaks down the effect of τj on total external cost into two parts : (i)

∂cj
∂Qj

N
∂Pj

∂τi
is the effect of τj on its own-market share; and (ii)

∑

i 6=j
∂ci
∂Qi

N ∂Pi

∂τi
is the

effect of τj on the market shares of the other vehicle types in the set. This second

part exists because of the substitution effect among different alternatives in the choice

set. For instance, when the tax on BEVs decreases, the probability of a BEV being

purchased increases. Some of the consumers that would have purchased other types such

as ICEVs, HEVs or PHEVs now opt for BEVs instead. As probabilities sum to one over

all vehicle types, an increase in the probability of one type must dovetail with a decrease

in probability of the other types.

The choice probabilities under the logit model also have a special property of independence

from irrelevant alternatives, or IIA—that is, the relative odds of choosing j over i are the

same no matter what other types are available. This property can be demonstrated in the

ratio Pi

Pj
:

Pi

Pj

=

eVi
∑

j e
Vj

e
Vj

∑
i e

Vi

=
eVi

eVj

Hence : Pi =
eVi

eVj
Pj = eVi −V jPj .

(4.12)

The marginal effect of vehicle tax τj on the market shares of other types i 6= j is

∂Pi

∂τj
=

∂Pj

∂τj
eVi−Vj +

∂
(

eVi−Vj
)

∂τj
Pj = Pj (1− Pj) θ

eVi

eVj
+ eVi−Vj

∂(−Vj)

∂τj
Pj

= Pj (1− Pj) θ
Pi

Pj

+
Pi

Pj

(−θ)Pj

= (1− Pj) θPi − θP i

= −θPjP i
.

(4.13)
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Plugging 4.6 and 4.13 into 4.12, we have

∂TEC

∂τj
=

∂cj

∂Qj

NPj (1− Pj) θ −
∑

i 6=j

∂ci

∂Qi

N θPjP i
. (4.14)

From 4.9 and 4.14, the marginal welfare effect of vehicle type j tax, ∂W
∂τj

is

∂W

∂τj
=

∂TCS

∂τj
−

∂TEC

∂τj
=

θN

α
Pj −

∂cj

∂Qj

NPj (1− Pj) θ +
∑

i 6=j

∂ci

∂Qi

N θPjPi

= θNP j [
1

α
−

∂cj

∂Qj

(1− Pj) +
∑

i 6=j

∂ci

∂Qi

Pi ].

Hence :
∂W

∂τj
= θNP j [

1

α
−

∂cj

∂Qj

+
∑

i

∂ci

∂Qi

Pi ]. (4.15)

This equation shows that the marginal welfare effect of the tax on vehicle type j depends

on the marginal disutilities of price and tax (α and θ), the number of consumers in the

market (N) as well as the market shares and the marginal external costs of all vehicle

types in the choice set.

The marginal external cost of vehicle type j (
∂cj
∂Qj

) appear twice in this marginal welfare

function: (i) first on its own and (ii)second in the sum of the products of the market

shares and marginal external costs of all vehicle types in the choice set
∑

i
∂ci
∂Qi

Pi. Since

Pi < 1, the first part dominates the second, and since θ < 0, the marginal external cost of

vehicle type j has a positive sign in this marginal welfare function. This sign reflects the

effect of the tax τj on the quantity of j and others. As the tax on type j decreases, more

vehicles of type j will be purchased. As the external cost of a vehicle type depends on

it quantity, marginal external cost of vehicle type j is added to the effect of the tax τj.

Since all the choice probabilities sum up to one, the more vehicles of type j are purchased,

the fewer purchases of vehicles of other types. Therefore, in the marginal welfare effect,

the marginal external costs of other types have negative signs (noting θ < 0).
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5 Data description & Empirical methodology

5.1 Data

The two datasets used in this paper come from the RDW (Rijksdienst voor het Wegverkeer),

the official vehicle registration authority of the Netherlands. The first dataset, which has

been pre-processed by the PBL, contains micro-data on 8.3 million vehicle registrations,

each of which includes the vehicle’s plate number (unchanged throughout its lifespan),

its date of first registration, list price and purchase tax (BPM). The characteristics of

each vehicle such as brand and model name, engine type, horse power, curb weight,

wheelbase, rear axle, fuel consumption and CO2 emissions, among others, constitute the

major part of this dataset. The second dataset contains records on the ownership of each

vehicle—individual or company (anonymized identifier) from when the vehicle was first

registered to 2017-end. A vehicle, whether a private car or company car, can change hands

many times throughout its lifespan, so this is a big dataset of over 67 million observations.

Each observation includes an ownership type reference: B a car stocked by a dealer,N for

a private car and R a company car or a business car4. The starting date and ending date

of each ownership are also given in each observation. The plate number is the unique

identifier of a certain vehicle across these two datasets.

The first task is to determine which cars in the vehicle characteristic dataset had been first

purchased as private cars. I merged these two datasets by a combination of plate number

and registration date and obtained two subsets of observations that only have either R or N

as ownership type references. Filtering out all the B observations which neither influence

nor assist with the identification of these cars, I merged again the remaining observations,

which are associated with multiple ownership types, with the original ownership dataset,

but this time, by plate number only. Grouping this newly-merged dataset by plate number,

I then filtered out the observations containing the earliest starting date for each car and a

holding duration of minimum 30 days. This was to avoid a situation when a car changed

hands so quickly from a company to a private driver. From these observations, I filtered

those with distinct plate numbers and homogeneous ownership type references to obtain

4This is a registration made by a company, but whether the car is mostly used for private trips (a
company car) or not (a business car) is unknown.
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the third subset. The remainder included observations of the same plate number and

registration date but mixed ownership references (both R and N ) and those with holding

duration lasting less than 30 days. I took further cleaning steps and finished with a

dataset of approximately 5.2 million private cars, which are used in this analysis.

Table 5.1 provides the descriptive statistics of the newly merged dataset. The netlistprice

was constructed from subtracting the corresponding VAT portion from the list price

variable in the dataset. According to BOVAG & RAI Vereniging (2020), The Dutch VAT

tax on passenger cars increased from 17.5% to 19% in January 2001 and then to 21% in

October 2012. The listprice variable suffers from a lot of missing values, around 200,000

of which were then recovered by using the average price of vehicles from the same brand,

model, year, segment, engine type and CO2 level. However, the large number of remaining

missing values is still a major drawback of this dataset.

Table 5.1: Descriptive statistics of private cars in the Netherlands in 2000-2017

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

bpm 5,251,425 4,544.9 4,094.5 0 2,083 5,984 182,960
netlistprice 2,535,971 18,355 18,274.4 405 10,377 22,230 528,407
weight 5,251,425 1,133.9 250.6 605 940 1,293 3,268
enginecylcap 5,246,965 1,538.5 459.1 599 1,229 1,796 8,285
wheelbase 5,251,348 2,546.6 149.7 1,810 2,450 2,650 3,970
rearaxle 5,250,921 1,472.3 65.2 1,200 1,430 1,520 1,920
horsepower 5,247,159 75.9 28.7 18 55 88 570
CO2 5,127,309 153.2 39.5 0 127 176 570
fuelconsumption 5,133,339 6.4 1.6 0 5.2 7.3 25
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Figure 5.1: Private car registrations by engine types

Figure 5.1 provides the distribution of private car registrations by year during 2000-2017.

These cars are grouped into four engine types : BEV, PHEV and HEV (with numbers of

registrations against the left vertical axis) and ICEV (the right vertical axis). Although

declining dramatically—by roughly five-fold over the period , ICEVs still dominate the

private car market. HEV registrations increased steadily from 2003, but started to decline

in 2013 only to pick up again in 2015. Meanwhile, PHEV and BEV had a late start.

Registrations of PHEV spiked in 2013 and then levelled off, whereas BEV registrations

slowly picked up. Over this period, the BPM experienced several changes as outlined in

Section 3. The milestones of these major changes are marked in Figure 5.1.

To study the impact of the tax benefits on EVs with the framework described in Section

5, I created a panel dataset from the existing dataset. The cross-sectional units are the

four engine types and the time dimension at weekly level. I used the median values (as

opposed to mean values to avoid extreme outliers) of each characteristic from vehicles

with the same engine type for each week. The next sub-section discusses the assumptions

and empirical strategy to analyse this panel dataset.
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5.2 Empirical methodology

To estimate the marginal disutility of price and tax (parameters α and θ in 4.15), I first

attempted to estimate the vehicle type demand function by using the multinomial logit

model (MNL). The use of MNL would require identifying the choice set each consumer

might have faced. To do this, van Eck et al. (2019) identify 196 unique combinations of

brand, model and fuel types from their vehicle registration dataset and assume the choice

set facing each consumer has 196 alternatives. This choice set is unrealistic, as hardly

anyone can consider such a large number of choices. Moreover, this identification would

not be particularly useful for my analysis, since vehicles would ultimately aggregated

into four engine groups. Instead, I used a method similar in spirit to what (Berry, 1994)

proposes to circumvent the nonlinear instrumental problems. Taking the logarithm of

equation 4.4, we have

ln(Pj) = Vj − ln(
∑

i

eVi) + εj. (5.1)

To drop the logsum term ln(
∑

it e
Vit), Berry (1994) take the difference in the logarithms of

market shares of alternative j and the outside good j = 0 (i.e. not buying a new vehicle).

ln(Pj)− ln(P0) = ln(
Pj

P0

) = Vj + εjt. (5.2)

Adamou et al. (2014) follow this strategy and add the time subscript t:

ln(Pjt)− ln(P0t) = ln(
Pjt

P0t

) = Vjt + εjt. (5.3)

By so doing, Adamou et al. (2014) make an implicit assumption that the choice sets are

equal over the years, which is not a realistic assumption. Also, obtaining the "outside

good" market share is tricky, since we do not observe the potential market size which

includes those that want to buy a car but do not purchase one. Total market size can be

set as the number of households in the market (Berry et al., 1993; Adamou et al., 2014),

although this might be an overestimation in the Dutch context. Alternatively, total market

size can be estimated to be the sum of new and old car sales, for example. In the literature,

the outside good term is often dropped from the regression with varied justifications.

Weber (2019) holds that the outside good is absorbed by the year fixed effects, hence
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regressing the log market share of alternative j via year fixed-effects regression. Similarly,

Azarafshar and Vermeulen (2020) argue that tax rebates would not incentivize consumers

to shift preferences from not buying a vehicle at all into buying a new EV vehicle. These

authors provide a test for this argument by estimating the extensive margin effects of the

rebates on total vehicle sales in each Canadian province, controlling for province- and

time-specific unobserved factors. Their estimation results show no significant effect of the

rebates on the aggregate sales, invalidating the possibility that those that would not have

bought any new vehicle in the absence of the rebates would choose to buy new EVs in the

presence of the rebates. Based on this finding, Azarafshar and Vermeulen (2020) set the

dependent variable to be the log of model-specific market share, instead of the log-odds

ratio of buying a new EV relative to buying no new vehicle.

To avoid estimating the potential market size and making further assumptions regarding

the outside good, I take the difference in the logarithms of the market shares of two

alternatives j and i. Since these two belong to the same choice set, the logsum terms are

cancelled out:

ln(Pjt)− ln(Pit) = Vjt − Vit + εjt − εit.

The logarithms of market shares of the two vehicle types can thus be modelled by standard

linear regression methods with the regressors being the differences in prices, taxes and

attributes of these two types:

ln(Pjt)− ln(Pit) = α(pjt − pit) + θ(τjt − τit) + β(X ′
jt −X ′

it) + (εjt − εit). (5.4)

The term (εjt−εit) can break down into three components: (i) a pair-specific term (εj−εi),

which captures unobserved factors that differ across pairs (j; i) and but are constant

over time (e.g. consumers’ preference for EVs as green vehicles as opposed to ICEVs

as environmentally-unfriendly means of transport); (ii) a time component λt capturing

unobserved factors that are constant across pairs but evolve over time (e.g. easiness to

charge EVs, which has improved steadily over time with the increasing availability of

charging stations) and (iii) an idiosyncratic error term (νjt − νit) capturing time-varying

and pair-varying unobserved factors. This idiosyncratic error term may also capture the

unobserved behavioral effect of the difference in the tax rates applied on vehicle types
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which varies over time and across pairs.

We want to estimate α, θ and β, or the effects of the differences in prices, taxes and

attributes, on the differences in the (logarithm) market shares of a vehicle type pair,

holding constant the unobserved pair characteristics (εj − εi) and unobserved time effects

λt. The key identifying assumption rendering fixed-effect estimators consistent is the zero

conditional mean of the error term given the regressors and the pair and time fixed effects.

This implies that the term (νjt − νit) must be uncorrelated with (pjt − pit), (τjt − τit) and

(X ′
jt − X ′

it), controlling for the pair-specific and time-specific effects. This assumption

may not be met, because price differences might well be related to differences in many

vehicle attributes that must be excluded from the regression due to their high correlations

with the price. This endogeneity problem means that the fixed-effect estimator of the

price might be biased.

The most common solution to this problem is to employ instrumental variables (IV). For

instance, using nested logit to estimate a vehicle type demand, Adamou et al. (2014)

use the sum of each vehicle attribute characteristic (i.e. horsepower CO2 emission level

and engine capacity) and of the constant term over all competing products belonging

to the same nest as an IV for price. The IV-estimated price coefficients across three

model specifications are between 2 and 7 times higher than those estimated by OLS.

The authors use two levels of aggregation of their dataset: (i) at the aggregated level,

a product is specified by the model and engine type, resulting in 729 unique products;

and (ii) at the disaggregated level, models were broken down into different categories

of engine displacement, doubling the number of unique products. By comparison, my

unit of analysis is vehicle types by engine—that is, more aggregated than commonly seen

in the literature (e.g. by model or a combination of brand and model). Furthermore,

the dependent variable and all regressors in this present study are in difference form.

Therefore, the omitted variable bias might be less pronounced than in Adamou et al.

(2014).
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6 Results & Discussion

6.1 Descriptive statistics

To implement the empirical strategy described in Section 5, I computed the differences

between BEV and each of the other types and obtained the descriptive statistics and

correlation matrix:

Table 6.1: Descriptive statistics of key variables

Variable N Mean Std. dev. Min. 25% Median 75% Max.

d_netlistprice 1926 -2968.71 26476.06 -99149 -21157.8 -15941.7 14407.11 107233
d_bpm 2139 -2693.89 2056.9 -17833 -4226.46 -2811.96 -469.07 4835
d_horse_
power 1254 -65.9 21.9 -190 -76.5 -71.752 -61.8 77
d_weight 2139 -503.13 826.42 -2018.5 -1220 -1061.44 336.67 2056
d_wheelbase 2139 -1311.77 1439.98 -2960 -2573.87 -2501.84 110.057 2960
d_rearaxle 2139 -748.285 827.19 -1645 -1480 -1455.77 50.83 1700
d_fuel_
consumption 2137 -4.82 1.69 -14.7 -5.84 -4.93 -4.36 0
d_CO2 2139 -114.43 41.275 -349 -138.96 -114.77 -104.68 0
d_enginecylcap 1186 -1537.93 278.419 -3564 -1669.25 -1567.83 -1477.25 1339
d_lshare 2139 -2.254 5.86 -16.96 -6.99 0 2.794 9.48

Figure 6.1: Correlation matrix for 2000-2017 dataset
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The correlation matrix shows substantial correlations between d_netlistprice and d_weight,

d_wheelbase and d_rearaxle. These high correlations are expected, because bigger cars

tend to be more expensive. Meanwhile, d_bpm is highly correlated with d_fuelconsumption

and d_CO2, because the BPM tax was dependent on vehicle CO2 emission level, which is

contingent on fuel consumption. Adding these variables together in one regression will

thus lead to multicollinearity problem, which will affect the interpretation of the estimated

coefficients of our two variables of interest: d_netlistprice and d_bpm. However, there is

no correlation between these two variables, thus including them both in a regression will

not compromise the interpretation of their estimated coefficients.

6.2 Estimation results

Table 6.2: Regression results

Dependent variable: d_lshare

OLS Fixed-effects
(1) (2) (3) (4) (5) (6)

d_netlistprice -0.077*** -0.079*** -0.057*** -0.011*** -0.013*** -0.001
(0.005) (0.005) (0.006) (0.003) (0.003) (0.003)

d_bpm 0.619*** 0.616*** 0.964*** -0.195*** -0.195*** -0.067***
(0.025) (0.025) (0.038) (0.016) (0.016) (0.025)

d_horsepower 0.085*** 0.085*** 0.030*** 0.008*** 0.007** -0.014***
(0.006) (0.006) (0.007) (0.003) (0.003) (0.003)

d_enginecylcap -0.005*** -0.005*** -0.004*** 0.002*** 0.002*** 0.003***
(0.0003) (0.0003) (0.0003) (0.0002) (0.0002) (0.0002)

pair fixed-effects no no no yes yes yes
month fixed-effects no yes no no yes no
year fixed-effects no no yes no no yes
Observations 1,002 1,002 1,002 1,002 1,002 1,002
Adjusted R2 0.728 0.730 0.814 0.951 0.952 0.961
F-test for
pair fixed-effects 2248.1*** (df1 = 2, df2 = 995)

Notes: *p<0.1; **p<0.05; ***p<0.01. Standard errors are reported in parentheses.

Table 6.2 presents the results from linear regression analysis. Only d_horsepower and

d_enginecylcap are included as control variables, because the others are highly correlated

with the two variables of interest. Column (1) provides the estimates from the OLS

regression as the base specification. The month (month of the year) fixed-effects do not
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appear to have any significant effects, as estimates in column (2) do not differ much from

the base estimates. Meanwhile, the year fixed effects seem to absorb some variations in

both the variables of interest as shown in column (3). The estimated coefficients of the

d_bpm variable, or parameter θ, have unexpected sign across the first three specifications.

θ has the expected negative sign only when the pair fixed-effects are included, indicating

that the difference in BPM tax variable and the pair fixed-effects are highly related. This

indication makes sense because the BPM varies across the vehicle types and equals 0

for BEVs. Comparing specification (4) with the base OLS (1), much of the price effect

is absorbed in the pair fixed-effects. The F-test for individual effects confirms the pair

fixed-effects model (4) is better than the OLS. When the pair fixed-effects are controlled

for, the estimated α declines by seven-fold, θ has the negative sign as expected and the

model fit also improves (adjusted-R2 increases from 0.73 and 0.82 to 0.95). Adding the

month fixed-effects in specification (5) does not substantially improve the model fit or

change the estimates for both our variables of interest. Meanwhile, adding the year

fixed-effects in specification (6) crowds out the effects of these variables.

In the preferred specification (4), the estimated θ is approximately 20 times larger than α.

As both vehicle net list price and vehicle tax have the same units (e’000), this indicates

that controlling for vehicle type, horsepower and engine capacity, consumers are 20 times

more sensitive to the BPM tax than the vehicle price. This behavioral effect of tax is

substantial, indicating consumers’ strong aversion to the vehicle purchase tax BPM. This

also implies that the tax is an effective instrument to influence consumer choices.

6.3 Estimates for marginal external costs

Vehicle purchase tax is a one-off payment. It is not a tax on the ownership or the use of

the vehicle. Thus the externalities meant to be internalized by this tax do not vary by

the length of the ownership or the extent of driving made by the vehicle. Based on the

discussion on the various environmental impacts throughout the lifespan of a vehicle in

Section 2, the externalities relevant for the vehicle purchase tax are those associated with

the vehicle production and end-of-life phases.

To obtain the estimated marginal external costs (∂ci
∂Qi

in 4.15) from vehicle production and

end-of-life phases of the four vehicle types under study, I collated the relevant emissions
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output (Table 6.3) from the GREET 2 Model (Argonne National Laboratory, 2020), the

most comprehensive and updated database for life-cycle-assessment of various vehicle

technologies. The model offers estimates for five propulsion technologies—ICEV, HEV,

PHEV, BEV and Fuel cell vehicle (FCV). The last type is not included Table 1 due to

the very low uptake of this technology in the Dutch car market. The GREET 2 simulates

vehicle-cycle energy use and emissions from raw material recovery, vehicle component

production, assembly, disposal and recycling. Two main vehicle material compositions are

evaluated in the model—lightweight and conventional. I focus only on the estimates of

conventional material vehicles, since the use of lightweight materials in car manufacturing

is still in its infancy. Six major GHGs and pollutants from vehicle production and

end-of-life phases include CO2, NOx, PM10, PM2.5, CH4 and CO.

Table 6.3: Emissions from vehicle production and end-of-life phase (kg)

ICEV PHEV BEV HEV

CO2 5,678.14 6,771.31 6,261.66 5,832.70
NOx 6.91 8.50 7.80 7.15
PM10 2.63 3.36 3.27 2.85
PM2.5 1.22 1.47 1.35 1.32
CH4 12.59 14.40 13.53 12.77
CO 19.53 21.71 18.86 20.58

Table 6.4: Environmental prices for average atmospheric emissions in the EU28 (e2015/kg
emission)

Lower Central Upper

CO2 0.022 0.057 0.094
NOx 9.97 14.8 22.1
PM10 19 26.6 41
PM2.5 27.7 38.7 59.5
CH4 0.673 1.74 2.91
CO 0.0383 0.0526 0.0918

Table 6.5: Estimated marginal external costs during vehicle production and end-of-life
phases (e2015)

ICEV PHEV BEV HEV

Lower 286.60 348.84 324.92 299.66
Upper 904.87 1,093.58 1,016.58 940.65
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Next, I obtained the environmental prices of these emissions from the Environmental Prices

Handbook (CE Delft, 2018), which provides the upper, central and lower pollutant level

values (Table 6.4). The ranges in these estimates are indicative of the uncertainties in how

much people value environmental quality. The upper and lower values are recommended to

be used in social cost-benefit analysis (CE Delft, 2018). Finally, I multiplied the estimates

in Table 6.3 and Table 6.4 to obtain the marginal external costs from vehicle production

and end-of-life phases of the four vehicle engine types reported in Table 6.5.

Table 6.6: Vehicle statistics in 2017

Sales Market share Avg. netlistprice Avg. BPM Avg. horsepower Avg. engine

ICEV 146,910 91.34% 21,265 4,262 81.1 1262.3
PHEV 848 0.53% 39,008 1,569 113.6 1792.4
BEV 1,077 0.67% 54,079 0 40.0 703.0
HEV 12,012 7.47% 31,864 1,376 110.0 1648.2
Total(N) 160,847

6.4 Welfare effects

As the instrumental variable techniques are out of scope for this present study, I adjusted

the OLS estimates of coefficients on price and tax by a multiplier of 3 to obtain the

estimates that might have been generated with an IV technique: α = (−0.011)∗3 = −0.033

and θ = (−0.195) ∗ 3 = −0.589.

Plugging the estimates of α and θ, and the vehicle statistics in 2017 (Table 6.6) into the

equations of total consumer surplus and total external costs in Section 5, I obtain a net

welfare loss of e30.7 million using the lower values of the marginal external costs in 6.5

and e130.6 million using the upper values. These values correspond to e190 to e800 per

car. Plugging these estimates into the marginal welfare effect function 4.15, I conclude

that for every e1,000 increase in the BPM tax on BEV, social welfare will increase by

approximately e94 million.

The net welfare loss from BPM tax exemption on private BEVs is a result of the tax’s

failure to internalize the external cost of BEV production and disposal phases. The BPM

in its current form is only dependent on CO2 emission from vehicle-use phase, which is

zero for BEVs. However, BEV drivers already enjoy the benefit of the zero CO2 emissions
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from BEVs during the vehicle-use phase, as they pay no fuel tax. The BPM tax exemption

only make BEVs less expensive for consumers, hence creating some consumer surplus

gain, while leaving their externalities during the vehicle-production and end-of-life phases

unaddressed.

The findings from this paper suggest that BPM exemption for BEVs, albeit effective

in increasing BEV adoption, is not a welfare-enhancing policy. Strictly speaking, to

internalize the external costs from vehicle production and end-of-life phases, BEV buyers

should pay a higher BPM tax than conventional cars. To increase BEV adoption without

creating a welfare loss, the appropriate policies should focus on the vehicle-use (WTW)

stage where BEVs yield more environmental benefits than ICEVs. These can be an

increase in the fuel taxes, or a vehicle mile traveled (VMT) tax differentiated by engine

types.

While this present study only focuses on the Dutch private car market, its findings also

shed lights on the company car market. The bijtelling treatment for company cars has

already caused a social welfare loss, as it leads to purchases of more expensive cars and

more kilometers driven (Gutiérrez-i Puigarnau and Van Ommeren, 2011) than would be

the case for private cars. In 2017, the bijtelling rate (percentage of net list price) applied

on EV company cars is 4%, much lower than the rate imposed on non-EVs (22%). Using

the average net list price of a BEV in 2017 ( Table 6.6), the difference of 18% would

amount to e9,700 of tax loss per company BEV, which is twice the amount of BPM

loss per private BEV. This implies that welfare loss from company car tax reduction for

BEVs can even exceed the estimated welfare loss from the BPM exemption for private

BEVs found in this present study and the estimated average welfare loss per company car

between e70 and e159 found in Dimitropoulos et al. (2016).

6.5 Caveats and avenues for further research

The present study has ample room for improvement. First, its theoretical framework

and empirical analysis are based on the IIA assumption which implies unrealistic

substitution patterns among different vehicle type choices. With further data on the drivers’

characteristics such as income, age, residential location, and perhaps, the consideration

set as in Xing et al. (2021), the mixed logit model or latent class model will yield more
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convincing results due to their relaxed IIA assumption. That being said, as shown in van

Eck et al. (2019), the mixed logit model may not necessarily outperform the standard

multinomial logit model. van Eck et al. (2019) use the mixed logit model to control for

unobserved behavioral factors, but this model fails to generate the expected signs for

the estimates of the variables of interest (i.e. fuel cost and lease cost of company cars).

Ultimately, their preferred estimates come from the standard multinomial logit model.

Second, the present analysis does not make full use of the given micro dataset, due

to the high aggregation level of the data—at the engine-type level, that finally go to

the vehicle demand estimation. The choice of this aggregation level was driven by the

available estimates of the environmental impacts from the vehicle-production and disposal

phases, which are only at the engine-type level. If these estimates are available at a more

disaggregated level (i.e. by vehicle attributes such as weight, segment, horsepower or

driving range), the detailed variations at the vehicle-level of the micro dataset will be of

more use.

Third, this analysis ignores a potential ramification of point-of-sale incentives such as the

BPM exemptions—that is, the reduction in the average life of vehicles, hence an increase

in vehicle production. Further research on how a purchase tax can affect vehicle holding

duration can provide insights into this unintended effect of the incentives.

Last, the welfare analysis in this paper also does not factor in EVs’ potential positive

externality with respect to the vehicle-to-grid innovation and energy security as discussed in

Section 2. Albeit still laden with uncertainties, the network effect of EVs can be substantial.

Including this positive externality will make the welfare analysis more comprehensive.
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7 Conclusion

With a welfare framework based on random utility theory and a regression-type empirical

analysis on revealed preference data, this present study provides evidence of the net

welfare loss from the Dutch purchase tax exemption for battery electric vehicles. The

social cost analysis in this paper focuses on the environmental externalities associated

with the vehicle-production and end-of-life phases, which have been excluded from the

impact assessment of similar financial incentives in the existing literature. This research

can be strengthened with further data on the socio-economic characteristics of the Dutch

private drivers and more advanced econometrics techniques that can relax its assumptions

about the substitute patterns among different vehicles. More disaggregated estimates

of the marginal external costs during the vehicle-production and end-of-life phases can

enable the present study to make the most out of the available micro dataset. The findings

from this study call for a reconsideration of using purchase tax incentives to promote EV

adoption.

Though electric cars have been existing for as long as gas-guzzlers, they kept a low profile

in the last century and has only gained relevance over the recent decade. This revival

was largely driven by the increasing pressure of GHG emissions, air pollution and oil

dependency in many developed and emerging markets. Given the announced goals and

plans of governments across the world, the transition from a predominantly fuel-powered

vehicle fleet to an electrified one is bound to accelerate in the next decade. Purchase

tax incentives, albeit not a cost-effective instrument to reduce GHG emissions as shown

in the existing literature, will remain a popular tool for policymakers to stimulate the

uptake of EVs. This present study contributes another perspective to examine the impact

of this instrument and suggests a different form of tax incentives, specifically during the

vehicle-use phase, to deliver net welfare gain in terms of environmental benefits.
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Appendix

A1 R code for the empirical analysis

1 library(data.table)

2 library (dplyr)

3 library(stargazer)

4 library(lfe)

5 library(plm)

6 devtools :: install_github ("joachim -gassen/ExPanDaR ")

7 library(ExPanDaR)

8 library(corrplot)

9

10 priv <- fread ("../ data.csv")

11 ############ construct dates ################

12 priv$year <- format(as.Date(priv$dt1streginnl , format ="%d/%m/%Y") ,"%Y")

13 priv$month <- format(as.Date(priv$dt1streginnl , format ="%d/%m/%Y") ,"%m

")

14 priv$week <- format(as.Date(priv$dt1streginnl , format ="%d/%m/%Y") ,"%Y-W

%V")

15 time <- cbind(priv$week ,priv$month)

16 time <- data.frame(time)

17 ########### recover missing values of net list price ###########

18 priv <- priv%>%

19 group_by(brand ,model ,year ,vehsegment ,propulsiontype ,

emissco2combi_g_km)%>%

20 mutate(newlistprice=median(listprice ,na.rm=TRUE))

21

22 priv$newlistprice <- ifelse(is.na(priv$listprice),priv$newlistprice ,

priv$listprice)

23 priv$netlistprice <- ifelse(priv$dt1streginnl < "2001 -01 -01" ,0.825*

priv$newlistprice ,

24 ifelse(priv$dt1streginnl >="2001 -01 -01" &

priv$dt1streginnl <"2012 -10 -01" ,0.81* priv$newlistprice ,

25 0.79* priv$newlistprice))

26 priv$netlistprice <- priv$netlistprice /1000

27

28 ################### rename variables ##################

29 priv <- priv %>%

30 rename(bpm=bpm_paidvehregtax ,

31 weight= massemptyveh ,

32 horsepower=power_kw ,

33 rearaxle = vehrearaxl ,

34 fuelconsumption=fuelconscombi_l_100km ,

35 CO2 = emissco2combi_g_km ,

36 enginecylcap = enginecylcap_cc ,

37 )

38 priv$bpm <- priv$bpm /1000

39 ################ construct chosen ##########################

40 priv$chosen <- priv$propulsiontype

41 priv$chosen[priv$chosen =='Alcohol ']<-'ICEV '

42 priv$chosen[priv$chosen =='CNG ']<-'ICEV '

43 priv$chosen[priv$chosen =='Diesel ']<-'ICEV '

44 priv$chosen[priv$chosen =='Diesel Electric ']<-'ICEV '

45 priv$chosen[priv$chosen =='Double Combustion Other ']<-'ICEV '

46 priv$chosen[priv$chosen =='Electric ']<-'BEV '
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47 priv$chosen[priv$chosen =='Electric Gasoline ']<-'ICEV '

48 priv$chosen[priv$chosen =='Gasoline ']<-'ICEV '

49 priv$chosen[priv$chosen =='LPG ']<-'ICEV '

50 priv$chosen[priv$chosen =='Hybrid Diesel Electric ']<-'HEV '

51 priv$chosen[priv$chosen =='Hybrid Electric Gasoline ']<-'HEV '

52 priv$chosen[priv$chosen =='Hybrid other ']<-'HEV '

53 priv$chosen[priv$chosen =='Plug -in Hybrid Diesel Electric ']<-'PHEV '

54 priv$chosen[priv$chosen =='Plug -in Hybrid other ']<-'PHEV '

55 priv$chosen[priv$chosen =='Plug -in Hybrid Electric Gasoline ']<-'PHEV '

56 priv <- priv[priv$chosen !=" Hydrogen_Fuel_Cell ",]

57

58 ######################## Sales by type by year ##############

59 des <- as.data.frame(table(priv$chosen ,priv$year))

60 bev <- subset(des ,Var1 ==" BEV")

61 icev <- subset(des ,Var1 ==" ICEV")

62 phev <- subset(des ,Var1 ==" PHEV")

63 hev <- subset(des ,Var1 ==" HEV")

64 des2 <- matrix(data=NA, nrow=18, ncol = 4)

65 colnames(des2) <- c("BEV","PHEV", "HEV", "ICEV")

66 des2 <- data.frame(des2)

67 des2$BEV <- bev$Freq

68 des2$ICEV <- icev$Freq

69 des2$PHEV <- phev$Freq

70 des2$HEV <- hev$Freq

71 des2 <- t(des2)

72 des2 <- data.frame(des2)

73 colnames(des2) <- c(2000:2017)

74 fwrite(des2 ," year1.csv")

75 ############################ PANEL DATA ############

76 g_priv <- priv%>%

77 group_by(week)%>%

78 summarise(totalcount = n())%>%

79 ungroup ()

80

81 priv_median <-

82 priv%>%

83 group_by(week ,chosen)%>%

84 summarise(count = n(),netlistprice=median(netlistprice ,na.rm = TRUE),

85 bpm=median(bpm ,na.rm = TRUE),

86 horsepower=median(horsepower ,na.rm = TRUE),

87 weight=median(weight ,na.rm = TRUE),

88 wheelbase=median(wheelbase ,na.rm = TRUE),

89 rearaxle=median(rearaxle ,na.rm = TRUE),

90 fuelconsumption=median(fuelconsumption ,na.rm = TRUE),

91 CO2=median(CO2 ,na.rm = TRUE),

92 enginecylcap=median(enginecylcap ,na.rm=TRUE),)%>%

93 ungroup ()

94

95 priv_median <- left_join(priv_median , g_priv ,by ="week")

96 priv_median$market_share <- priv_median$count/priv_median$totalcount

97 priv_median$l_share <- log(priv_median$market_share)

98 priv_median$count <- NULL

99 priv_median$totalcount <- NULL

100

101 ######## ICEV

102 b_ice <- priv_median [! priv_median$chosen ==" PHEV",]

103 b_ice <- b_ice[! b_ice$chosen =="HEV",]

104 b_ice_g <-
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105 b_ice%>%

106 group_by(week)%>%

107 summarise(n=n())%>%

108 ungroup ()

109

110 b_ice <- left_join(b_ice , b_ice_g ,by ="week")

111

112 b_ice_1 <- subset(b_ice ,n=="1")

113

114 setDT(b_ice_1)

115 substract0 <- function(x){

116 if (class(x) == "numeric "){

117 0-x

118 } else {

119 x

120 }

121 }

122

123 b_ice_1[, names(b_ice_1) := lapply (.SD , substract0)]

124 b_ice_1 <- subset(b_ice_1 , select=-c(chosen ,n))

125

126 b_ice_2 <- subset(b_ice ,n=="2")

127

128 b_ice_2$netlistprice <- ifelse(b_ice_2$chosen ==" ICEV",-

b_ice_2$netlistprice ,b_ice_2$netlistprice )

129 b_ice_2$bpm <- ifelse(b_ice_2$chosen ==" ICEV",- b_ice_2$bpm ,b_ice_2$bpm

)

130 b_ice_2$horsepower <- ifelse(b_ice_2$chosen ==" ICEV",-

b_ice_2$horsepower ,b_ice_2$horsepower)

131 b_ice_2$weight <- ifelse(b_ice_2$chosen ==" ICEV",- b_ice_2$weight ,

b_ice_2$weight)

132 b_ice_2$wheelbase <- ifelse(b_ice_2$chosen ==" ICEV",- b_ice_2$wheelbase ,

b_ice_2$wheelbase )

133 b_ice_2$fuelconsumption <- ifelse(b_ice_2$chosen ==" ICEV",-

b_ice_2$fuelconsumption ,b_ice_2$fuelconsumption )

134 b_ice_2$CO2 <- ifelse(b_ice_2$chosen ==" ICEV",- b_ice_2$CO2 ,b_ice_2$CO2

)

135 b_ice_2$ln_share <- ifelse(b_ice_2$chosen ==" ICEV",- b_ice_2$l_share ,

b_ice_2$l_share)

136 b_ice_2$rearaxle <- ifelse(b_ice_2$chosen ==" ICEV",- b_ice_2$rearaxle ,

b_ice_2$rearaxle)

137 b_ice_2$enginecylcap <- ifelse(b_ice_2$chosen ==" ICEV",-

b_ice_2$enginecylcap ,b_ice_2$enginecylcap)

138

139

140 b_ice_m <- b_ice_2%>%

141 group_by(week)%>%

142 summarise(netlistprice=sum(netlistprice),

143 bpm=sum(bpm),

144 horsepower=sum(horsepower),

145 weight=sum(weight),

146 wheelbase=sum(wheelbase),

147 rearaxle=sum(rearaxle),

148 fuelconsumption=sum(fuelconsumption),

149 CO2=sum(CO2),

150 enginecylcap=sum(enginecylcap),

151 l_share=sum(l_share))%>%

152 ungroup ()
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153

154 icev <- bind_rows(b_ice_1 ,b_ice_m)

155 icev$pair <- "BEV_ICEV"

156

157 ################### PHEV

158 b_ice <- priv_median [! priv_median$chosen ==" ICEV",]

159 b_ice <- b_ice[! b_ice$chosen =="HEV",]

160 b_ice_g <-

161 b_ice%>%

162 group_by(week)%>%

163 summarise(n=n())%>%

164 ungroup ()

165

166 b_ice <- left_join(b_ice , b_ice_g ,by ="week")

167

168 b_ice_1bev <- subset(b_ice ,n=="1"& chosen =="BEV")

169

170 b_ice_1non <- subset(b_ice ,n=="1"& chosen ==" PHEV")

171

172 setDT(b_ice_1non)

173 substract0 <- function(x){

174 if (class(x) == "numeric "){

175 0-x

176 } else {

177 x

178 }

179 }

180

181 b_ice_1non[, names(b_ice_1non) := lapply (.SD , substract0)]

182

183 b_ice_1non <- subset(b_ice_1non , select=-c(chosen ,n))

184 b_ice_1bev <- subset(b_ice_1bev , select=-c(chosen ,n))

185

186

187 b_ice_2 <- subset(b_ice ,n=="2")

188

189 b_ice_2$netlistprice <- ifelse(b_ice_2$chosen ==" PHEV",-

b_ice_2$netlistprice ,b_ice_2$netlistprice )

190 b_ice_2$bpm <- ifelse(b_ice_2$chosen ==" PHEV",- b_ice_2$bpm ,b_ice_2$bpm

)

191 b_ice_2$horsepower <- ifelse(b_ice_2$chosen ==" PHEV",-

b_ice_2$horsepower ,b_ice_2$horsepower)

192 b_ice_2$weight <- ifelse(b_ice_2$chosen ==" PHEV",- b_ice_2$weight ,

b_ice_2$weight)

193 b_ice_2$wheelbase <- ifelse(b_ice_2$chosen ==" PHEV",- b_ice_2$wheelbase ,

b_ice_2$wheelbase )

194 b_ice_2$fuelconsumption <- ifelse(b_ice_2$chosen ==" PHEV",-

b_ice_2$fuelconsumption ,b_ice_2$fuelconsumption )

195 b_ice_2$CO2 <- ifelse(b_ice_2$chosen ==" PHEV",- b_ice_2$CO2 ,b_ice_2$CO2

)

196 b_ice_2$ln_share <- ifelse(b_ice_2$chosen ==" PHEV",- b_ice_2$l_share ,

b_ice_2$l_share)

197 b_ice_2$rearaxle <- ifelse(b_ice_2$chosen ==" PHEV",- b_ice_2$rearaxle ,

b_ice_2$rearaxle)

198 b_ice_2$enginecylcap <- ifelse(b_ice_2$chosen ==" PHEV",-

b_ice_2$enginecylcap ,b_ice_2$enginecylcap)

199

200
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201 b_ice_m <- b_ice_2%>%

202 group_by(week)%>%

203 summarise(netlistprice=sum(netlistprice),

204 bpm=sum(bpm),

205 horsepower=sum(horsepower),

206 weight=sum(weight),

207 wheelbase=sum(wheelbase),

208 rearaxle=sum(rearaxle),

209 fuelconsumption=sum(fuelconsumption),

210 CO2=sum(CO2),

211 enginecylcap=sum(enginecylcap),

212 l_share=sum(l_share))%>%

213 ungroup ()

214

215 phev <- bind_rows(b_ice_1non ,b_ice_1bev ,b_ice_m)

216 phev$pair <- "BEV_PHEV"

217 ################# HEV ################

218 b_ice <- priv_median [! priv_median$chosen ==" ICEV",]

219 b_ice <- b_ice[! b_ice$chosen ==" PHEV",]

220 b_ice_g <-

221 b_ice%>%

222 group_by(week)%>%

223 summarise(n=n())%>%

224 ungroup ()

225

226 b_ice <- left_join(b_ice , b_ice_g ,by ="week")

227

228 b_ice_1bev <- subset(b_ice ,n=="1"& chosen =="BEV")

229

230 b_ice_1non <- subset(b_ice ,n=="1"& chosen =="HEV")

231

232 setDT(b_ice_1non)

233 substract0 <- function(x){

234 if (class(x) == "numeric "){

235 0-x

236 } else {

237 x

238 }

239 }

240

241 b_ice_1non[, names(b_ice_1non) := lapply (.SD , substract0)]

242

243 b_ice_1non <- subset(b_ice_1non , select=-c(chosen ,n))

244 b_ice_1bev <- subset(b_ice_1bev , select=-c(chosen ,n))

245

246

247 b_ice_2 <- subset(b_ice ,n=="2")

248

249 b_ice_2$netlistprice <- ifelse(b_ice_2$chosen =="HEV",-

b_ice_2$netlistprice ,b_ice_2$netlistprice )

250 b_ice_2$bpm <- ifelse(b_ice_2$chosen =="HEV",- b_ice_2$bpm ,b_ice_2$bpm )

251 b_ice_2$horsepower <- ifelse(b_ice_2$chosen =="HEV",- b_ice_2$horsepower

,b_ice_2$horsepower)

252 b_ice_2$weight <- ifelse(b_ice_2$chosen ==" HEV",- b_ice_2$weight ,

b_ice_2$weight)

253 b_ice_2$wheelbase <- ifelse(b_ice_2$chosen =="HEV",- b_ice_2$wheelbase ,

b_ice_2$wheelbase )

254 b_ice_2$fuelconsumption <- ifelse(b_ice_2$chosen ==" HEV",-
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b_ice_2$fuelconsumption ,b_ice_2$fuelconsumption )

255 b_ice_2$CO2 <- ifelse(b_ice_2$chosen =="HEV",- b_ice_2$CO2 ,b_ice_2$CO2 )

256 b_ice_2$ln_share <- ifelse(b_ice_2$chosen ==" HEV",- b_ice_2$l_share ,

b_ice_2$l_share)

257 b_ice_2$rearaxle <- ifelse(b_ice_2$chosen ==" HEV",- b_ice_2$rearaxle ,

b_ice_2$rearaxle)

258 b_ice_2$enginecylcap <- ifelse(b_ice_2$chosen =="HEV",-

b_ice_2$enginecylcap ,b_ice_2$enginecylcap)

259

260

261 b_ice_m <- b_ice_2%>%

262 group_by(week)%>%

263 summarise(netlistprice=sum(netlistprice),

264 bpm=sum(bpm),

265 horsepower=sum(horsepower),

266 weight=sum(weight),

267 wheelbase=sum(wheelbase),

268 rearaxle=sum(rearaxle),

269 fuelconsumption=sum(fuelconsumption),

270 CO2=sum(CO2),

271 enginecylcap=sum(enginecylcap),

272 l_share=sum(l_share))%>%

273 ungroup ()

274

275 hev <- bind_rows(b_ice_1non ,b_ice_1bev ,b_ice_m)

276 hev$pair <- "BEV_HEV"

277

278

279 ################# COMBINED ##########

280 all <- bind_rows(icev ,phev ,hev)

281 all <- all %>%

282 rename(

283 d_netlistprice=netlistprice ,

284 d_bpm=bpm ,

285 d_weight= weight ,

286 d_horsepower=horsepower ,

287 d_wheelbase=wheelbase ,

288 d_rearaxle=rearaxle ,

289 d_fuelconsumption=fuelconsumption ,

290 d_CO2=CO2 ,

291 d_enginecylcap=enginecylcap ,

292 d_lshare=l_share)

293 ExPanD(df = all , cs_id = "pair", ts_id = "week")

294 all_numeric <- subset(all ,select = -c(week ,pair ,market_share))

295 col <- colorRampPalette(c("# BB4444", "# EE9988", "# FFFFFF", "#77 AADD",

"#4477 AA"))

296 M2 <- cor(all_numeric , use='pairwise ')

297 corrplot(M2 , method ="color", col=col (200) ,

298 type="upper",

299 addCoef.col = "black", # Add coefficient of correlation

300 tl.col="black", tl.srt=45, #Text label color and rotation

301 # hide correlation coefficient on the principal diagonal

302 diag=FALSE

303 )

304 time$week <- time$X1

305 time$month <- time$X2

306 time$X1 <- NULL

307 time <- distinct(time ,week ,. keep_all = TRUE)
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308 all <- left_join(all ,time ,by="week")

309 all$year <- format(as.Date(all$week , format ="%Y-W%V") ,"%Y")

310

311 ols <- lm(d_lshare~d_netlistprice+d_bpm+d_horsepower+d_enginecylcap ,all

)

312 lm2 <- felm(d_lshare~d_netlistprice+d_bpm+d_horsepower+d_enginecylcap|

pair , data=all)

313 lm3 <- felm(d_lshare~d_netlistprice+d_bpm+d_horsepower+d_enginecylcap|

year , data=all)

314 lm4 <- felm(d_lshare~d_netlistprice+d_bpm+d_horsepower+d_enginecylcap|

month , data=all)

315 lm6 <- felm(d_lshare~d_netlistprice+d_bpm+d_horsepower+d_enginecylcap|

year + month , data=all)

316 lm7 <- felm(d_lshare~d_netlistprice+d_bpm+d_horsepower+d_enginecylcap|

pair + month , data=all)

317 lm8 <- felm(d_lshare~d_netlistprice+d_bpm+d_horsepower+d_enginecylcap|

pair + year , data=all)

318

319 stargazer(ols ,lm4 ,lm3 ,lm2 ,lm7 ,lm8 , type="html", out = "final.txt")

320 fixed <- plm(d_lshare~d_netlistprice+d_bpm+d_horsepower+d_enginecylcap ,

index="pair", model = "within", data=all)

321 pFtest(fixed , ols)
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