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This paper studies the consequences of a new transportation infrastructure project on 

the housing market. Between 1968 and 2018, the Netherlands’ government engaged in 

establishing a mass rapid transit system, called Metro Line 52 or the North/South Line 

(de Noord/Zuidlijn), which runs between the South and North parts of Amsterdam. The 

hedonic estimates generated from panel linear estimation strategies suggests that the 

overall “winners” from the metro establishment are the houses located within a 537-

meter network distance from the nearest Metro Line 52 stations with an increase in 

house price by approximately 3.18% relative to the controlled areas. In addition, this 

paper also adopts a tree-based machine learning approach suggesting that the biggest 

“winners” from this investment goes to the properties with sizes of lower than 67 m2 

and located more than 2.2 km far away from the city centre. 

 
The questions of whether investments in transportation infrastructure can promote an improvement 

in quality of living and urban development are the essential concerns for urban, transport, and real estate 
economists. These investments aim to improve accessibility and reduce traffic congestion in the areas 
where the infrastructure is placed, as some people’s commuting habits are strongly determined by their 
access to the nearest public transportation hub, and the others rely heavily on road traffic and 
automobiles usage. Therefore, transportation infrastructure can promote an economic gain which can 
be captured by the capitalization of housing prices located close to the affected areas. However, the 
transportation investment may also reduce housing value due to the negative externalities caused by 
increased noise, pollution, or high crimes. Understanding the positive and negative effects of 
transportation infrastructure development can provide a fruitful insight not only for the evaluation of 
the project but also for social cost-benefit analysis as well as designing and evaluating 
regional/urban/transportation policies and real estate investment portfolio.  

Over the past few decades, the rapid transit system (RTS), also known as metro, subway, trams or 
heavy/light rail, has been commonly invested in major urban areas worldwide to deal with their urban 
challenges. An RTS can mitigate congestion problems and improve accessibility and connectivity to 
the city centre; thus, the city grows. Since the effects of transportation infrastructure development in a 
specific area are local by nature, it is expected that there are variations in values of houses between 
areas that are within and beyond the coverage area of the accessibility effect.  

A large body of literature investigates the effect of rapid transit system (RTS) on housing price (see 
Debrezion et al., 2007; Higgins & Kanaroglou, 2016; Mohammad et al., 2013 for meta-analyses). 
However, these studies are prone to endogeneity problems. Some problems are related to measurement 
error and data accuracy, especially in distance measures and housing prices. However, measurement 
error in housing prices as the dependent variable in the hedonic studies poses no threat to the consistency 
of the standard hedonic regression. In contrast, the distance variable, mainly used as the primary 
independent variable in the hedonic regression, is likely to produce biased estimates due to 
measurement error. Moreover, some of these studies also encounter selection bias problems when 
determining the treated and untreated group in a quasi-experiment design due to some possible 
confounders that influence the treatment assignment and the housing price.  
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This paper studies the consequence of the investment in Amsterdam’s newest metro line, also 
known as Metro Line 52 or the North/South Line (de Noord/Zuidlijn), on the Amsterdam housing 
market. Using the geographical datasets from the municipality of Amsterdam, I linked the data of 
pedestrian and cycle route data and other locational point data with residence-level data points of 
Amsterdam housing prices from the most prominent real estate brokerage association in the Netherlands, 
i.e., the Dutch Association of Real Estate Brokers and Experts (NVM). The exposure of using pedestrian 
and cycle route data in the analysis is that I can implement a more realistic and accurate network analysis 
compared to the road or street data (see Diao, Leonard, et al., 2017 for an example) and correct the 
measurement error that is usually occurred in the Euclidean studies (see Baum-Snow & Kahn, 2000; 
Dubé et al., 2011). This paper also uses spatial innovation proposed by Linden & Rockoff (2008) and 
extensively used in Diao, Leonard, et al. (2017). Those studies use the local polynomial regression 
approach to identify the treatment zone of an event on housing prices and eventually use it as the basis 
of their treatment group assignment. Using 537-meter total-travel-cost network distance as the treatment 
zone based on local polynomial regression calculation, I estimate the average treatment effect of a metro 
line investment on Amsterdam housing prices using a linear hedonic pricing regression with a 
difference-in-differences approach controlling for spatial and time fixed effects. I find that the opening 
of the metro line 52 increases the value of houses in the treated areas located within a 537-meter total-
travel-cost network distance from the nearest metro line 52 stations by approximately 3.18%, relative 
to other houses in the untreated areas.  

In recent years, many policymakers, practitioners, and researchers have become increasingly 
interested in estimating a more personalized treatment effect and answer the question of who gains the 
most from treatment. Knowing for whom the treatment works best can provide a higher intuition to 
understand the true mechanism behind the treatment better. Building on a prominent paper in estimating 
heterogeneous treatment effect (see Athey & Imbens, 2016), I apply the causal tree approach that is 
based on a classification and regression trees (CART) method (see Breiman et al., 1983) to estimate the 
conditional average treatment effect (CATE) of the opening of the metro line on Amsterdam housing 
prices. This approach can produce clusters of treatment effects for the treated and untreated groups 
while allowing the effects to vary over their housing characteristics.  

This research focuses on several questions. I first ask how Amsterdam residents value the change 
in accessibility caused by the Metro Line 52. This question can be addressed by estimating the elasticity 
of housing prices concerning the change in accessibility. Second, I ask whether there is an anticipation 
effect in the affected areas due to the announcement of the opening of metro line 52. The third question 
is about measuring how large the affected areas are. This question can be addressed by using the 
graphical result from local polynomial regression to find the distance where the reflection of a causal 
impact of the infrastructure development can be justified. The next question is about the commuting 
behaviour of Amsterdam residents. Is using Amsterdam pedestrian and cycle paths to go to the nearest 
metro station more realistic and accurate? Identifying whether using pedestrian and cycle path networks 
can correct measurement error that is primarily occurred in the Euclidean distance or not can answer 
this question. The next question is about how strong and dominant the effects are and how they can 
vary between different housing characteristics and among each leaf/subgroup of houses. Answering this 
question can help to answer the primary question in this paper which is to find who the biggest winners 
from the investment of the new metro line in Amsterdam are. Finally, I estimate the average treatment 
effects and then estimate its heterogeneous treatment effects to determine whether it has a positive or 
negative effect on housing price on average and on each subgroup of houses. 

The remainder of this paper is organized as follows. In section I, I will discuss the literature review. 
Section II describes the quasi-experiment studied in this paper, i.e., the opening of Metro line 52 in 
Amsterdam on 22nd July 2018. Section III presents the data and empirical design. Section IV reports the 
empirical results, including a variety of robust and sensitivity analyses. Section V concludes this paper.  
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I. Literature Review 

 

A. Theoretical Framework in the Literature on the Economic Effects of Transportation System 

 
The effect of transportation system development has been extensively studied for a very long time 

in regional science, urban planning, and even economics, where the discussion focused more on the 
dynamic interplay between transportation improvements and urban land use. The study of the effect of 
transportation system development on urban land use involves the key urban economics concept called 
bid rent. This concept constitutes the maximum amount that a household or a firm is willing to pay, 
concerning its utility or profit levels, for a land. 

Thünen (1875) suggests that the transportation savings determine the bid rent, and the land rents 
vary and depend on how close the land is to a central marketplace. Alonso (1964) argues that land rent 
does not vary in any way, except for areas close to the central business district (CBD) or employment 
centre where people who require shorter commutes can enjoy a cheaper commuting cost. However, to 
obtain such a benefit, people have to be willing to pay a premium which can be translated into an 
additional rent; thus the rent increases as people live closer to CBD. In contrast, other people, who 
require more lands instead of shorter commutes, locate themselves away further from the centre. 
Another extended concept has been presented where not only land rents changes, but also house price, 
building heights, and population density changes with respect to distance from the CBD (Muth, 1969; 
Richardson & Mills, 1973).  

It is argued that the demand for a specific location increases when the location becomes more 
attractive due to some attractive urban amenities (Brueckner et al., 1999; Glaeser et al., 2001). In our 
case, a CBD’s attractiveness leads to a higher demand for households to locate themselves close to the 
CBD. It also increases housing prices near CBD. However, the investment in transportation 
infrastructure, such as RTS, reduces this demand to some degree as it attracts households to locate 
themselves close to stations. Households living close to a station take the benefits of travel time and 
cost-saving from the investment. It also means that property or land values near CBD will decrease, 
whereas the house or land values near stations will increase. Some empirical studies have found that a 
new transportation system could flatten the bid rent curve of houses close to CBD and affect urban and 
even rural housing prices (see McMillen & McDonald, 2004; Zheng & Kahn, 2008). Higher 
accessibility (lower transportation costs) caused by the new transportation system would increase land 
value close to the station via the transportation system’s capitalization effect. 

The empirical estimation of RTS’s effect on real estate price requires a statistical model to control 
other possible characteristics associated with real estate prices. This is where the hedonic price method 
proposed by Rosen (1974) comes in. This model offers an easy way to capture the effect by controlling 
attributes (e.g., property size, number of bathrooms, and distance to amenities) of the property 
observations. However, the standard version of this approach has some limitations, and how to deal 
with such limitations will be discussed further in the identification strategy section of this paper. 

 
B. Empirical Evidence in the Literature of the New Rapid Transit System Effect on Housing Market 

 
Academic literature documents an extensive study focusing on the effect of a new transportation 

system on property or land values1. This extensive literature produces a high degree of variability in 

 
1 Despite the study of the transportation improvement effect on housing market, there is a large literature studying the similar 

literature but focusing on other outcomes instead of land or property value. Those studies showed evidences that transportation 
improvement can affect population (see Deng et al., 2019; Zhao et al., 2017), economic growth (see Ahlfeldt & Feddersen, 2018; Meng 
et al., 2018), gentrification (see Jackson & Buckman, 2020; Lin & Xie, 2020),  
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capitalized value associated with the transportation system establishment. A large number of studies 
find a positive capitalization effect of accessibility to the nearest RTS on housing price (see Gibbons & 
Machin, 2005; Hess & Almeida, 2007; Higgins, 2019; Pilgram & West, 2018). Some studies find 
insignificant effects (see Gatzlaff & Smith, 1993; Landis et al., 1995). The other studies find a negative 
effect of transportation investment on housing prices (see Bowes & Ihlanfeldt, 2001; Diao et al., 2016).  

Several meta-analyses have been done to date. Debrezion et al. (2007) conducted a meta-analysis 
to study this large variability. They collect 57 estimation results from previous studies and find that the 
residential property value is 2.3% higher than commercial property value every 250 m closer to a station. 
The variability can also be found in the type of transportation facility. They also find that commuter 
railway station has a consistently higher impact on property value than others. Mohammad et al. (2013) 
also conducted a similar meta-analysis based on 102 estimation results. They find that the average 
property value changes tend to be higher at distances between 500 and 805 m compared to distances 
more than half a mile away from a station. Lastly, Higgins & Kanaroglou (2016) perform a more 
extensive study involving 130 analyses (60 studies) and argue that the source of variability in this 
literature is the lack of proper empirical design, leading to a failure in capturing the overall capitalization 
effect and measuring other potential value. 

Another essential part of the literature is that the change in land use usually occurs before the 
transportation system project is built and after the announcement of the project is announced, which is 
known as the anticipation effect. Arnott & McMillen (2007) propose a concept in which the changes of 
bid rent will exist after the transportation system operates, but the market values of houses or land will 
change before “opening day” (the first time the project is announced). Several empirical studies have 
been conducted to capture the anticipation effects (see Devaux et al., 2017; Diao, Fan, et al., 2017; Dubé 
et al., 2018; Gatzlaff & Smith, 1993; McMillen & McDonald, 2004). The idea behind the anticipation 
concept is that the housing unit is viewed as an asset class that generates income from the rent charged 
to the tenants. In this perspective, the housing price will be based on the expected present value of the 
total accumulation of the future rents. Thus, the housing price will increase when the expected rental 
price increases due to increased accessibility. I will discuss the anticipation effect of the Metro Line 52 
project in the result section.  

 
C. The Heterogeneous Treatment Effect of an Opening of RTS on Housing Price 

 
In the study of the effects of transportation infrastructure development on housing prices, it is said 

that the effects may vary over different population groups. Levkovich et al. (2016) suggest that the 
effects of transportation infrastructure development on housing price vary between dwellings depending 
on their location, municipal affiliation, and distance to the site of the developed projects, and 
unobserved heterogeneity between properties. Duncan (2008) concludes that the capitalization effect is 
three times larger for multifamily than single-family housing. Furthermore, Li (2020) shows that the 
capitalization effects vary, depending on whether people live in a congested area or not. Kunimi & Seya 
(2021) suggest that it is fundamental to consider “who” benefits from the infrastructure project and 
where the benefits are located. Recently, there is extensive ongoing research in estimating heterogeneity 
in treatment effects using the machine learning method which will be discussed below. 

The concepts of machine learning and causal inference are arguably originated from dissatisfaction 
with linear regression. Both were developed simultaneously, and both communities have shared and 
exchanged their views together, as they realized that the frameworks formulated by both fields could 

 
employment (see Åslund et al., 2017; Jin & Kim, 2018; Mayer & Trevien, 2017). However, some empirical studies also find insignificant 
effect on the same indicator, e.g. population (see Mayer & Trevien, 2017), economic growth (see Garcia-Mila et al., 1996), and 
employment (see Jiwattanakulpaisarn et al., 2009).  
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provide a solution to each other field. One of the most intensively discussed issues regarding causal 
inference in machine learning these days is estimating the heterogeneous effect using machine learning, 
and the sample splitting approach. In most cases, the treatment effects vary across observations, 
meaning that the effect would be generalized to a population with different characteristics. Machine 
learning tools are deemed to be ideal for capturing the heterogeneity in treatment effects, assuming the 
assumption of confoundedness is held (Athey & Imbens, 2019).  

Previous attempts try to solve this problem by proposing the regression-tree-based method, called 
causal tree (Athey & Imbens, 2016) and causal forest (Wager & Athey, 2018), which have become a 
popular innovation in recent years. Several major empirical studies have been carried out in detecting 
the heterogeneity in treatment effect using these approaches (see Athey et al., 2018, 2019; Athey & 
Imbens, 2016; Chin et al., 2020; Davis & Heller, 2020; Hussam et al., 2020; Miller, 2020).  

One of the recent studies explores the effect of a new RTS on housing price using a machine 
learning approach. Chin et al. (2020) adopt Athey & Imbens (2016)’s causal tree with a difference-in-
differences empirical design to estimate the conditional average treatment effects (CATE) of a new 
RTS across several dimensions of properties and its characteristics. Thus, this CATE estimation can 
break down the average treatment effects that correlate with the accessibility to the new RTS. They 
document a significant heterogeneity on observable dimensions in their study. They found that most 
apartment types in the treatment group experienced appreciation in property value, while several 
property types in the control group declined in value. The result also suggests that an apartment with 
three rooms, two bathrooms, construction age lower than five years, and located within 1 km from the 
nearest RTS station constitutes as the top 25% leaf that benefits the most from the treatment.  

This paper applies approaches that are close to the work of Chin et al. (2020). The distinguishing 
features of this study can be seen from the use of network distance instead of Euclidean distance and 
the use of local polynomial regression as a method to find a more accurate distance for the treatment 
assignment instead of setting a discrete 1 km distance from the station as a basis of treatment assignment. 
Lastly, the major distinction is that this study uses the interactive terms of the treated areas and post 
event dummies as the binary treatment variable in the causal tree setting, while Chin et al. (2020) uses 
only treated areas as the binary treatment variable.  
 

II. Quasi-experiment: Amsterdam Metro Line 52 (The North/South Line)2 

 
This paper focuses on the city of Amsterdam, which is the capital and most populous city in the 

Netherlands and is located in the province of North Holland (see Figure 1). This urban area covers 
21,949 hectares and accommodates almost 863,000 people3. The city provides a high level of pedestrian 
and cycle infrastructure; metro, tram, and bus system; ferry routes and canals; and city road. Amsterdam 
is also known as one of the most bicycle-friendly cities worldwide, as 48% of all home-to-work trips 
uses bicycle in Amsterdam4. Furthermore, CBS noted that Dutch people usually take their bikes or walk 
for trips within a five-kilometre distance5. The city has five metro lines, 14 tram lines, 43 bus lines, and 
ten ferry lines operated to date6. 

Recognizing the urban challenges such as the booming population and number of vehicles occurring 
in Amsterdam in the early 20th century, many feasibility studies had been published and sent to the 
Municipal Council of Amsterdam (Gemeente Amsterdam) in response to the possibility of developing 

 
2 The terms of “the North/South Line” and “Metro Line 52” are used interchangeably in this paper. 
3 Source: Statistics Netherlands (CBS) (2019) 
4 Available at https://www.government.nl/documents/reports/2018/04/01/cycling-facts-2018 
5 Source: Statistics Netherlands (CBS) (2016)   
6 Source: Gemeente Vervoerbedrijf (2021) 
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public transport in Amsterdam. In 1968, Gemeente Amsterdam agreed with a strategic transport plan 
called the Plan Stadsspoor (Metroplan), which aims to create a metro system connecting all 
neighbourhood areas in Amsterdam. The original Metroplan suggested four different routes, comprising 
two lines running from the eastern part to the western part of Amsterdam, one circle line, and the last 
one, the North/South Line, has to be constructed in Amsterdam. However, some prolonged 
controversies related to the planning and construction of the metro system, especially for the 
North/South Line project (Mottee et al., 2020), will be further discussed below. 

The initial phase of the metro system was started by constructing the East Line, which links the 
southeast part of Amsterdam (Zuidoost) with the city centre (Centrum) in 1970. Right after the line 
crosses the border of Zuidoost, the line is split into two branches. Those are the branches of Gaasperplas 
and Gein and later on are called Metro Line 53 and Metro Line 54, respectively. In 1975, the 
construction of the East Line led to community protests as it damaged the existing urban form. This 
also resulted in all projects being stalled and the loss of trust by the locals in the government. However, 
the continuation of the Metro Plan was reconsidered after a new and less damaging construction method 
was proposed to the Gemeente Amsterdam (van den Ende & van Marrewijk, 2019; Van Lohuizen, 
1989). Several feasibility studies for the North/South Line project had been conducted. After 
considering the studies and the referendum in 1996, Gemeente Amsterdam decided to proceed with the 
plan and asked for funding from the Dutch National Government. The North/South Line proposal was 
considered promising and was approved on June 21st, 2000, by the Dutch National Government. 

In October 2002, Gemeente Amsterdam made a final decision and decided to start constructing the 
Metro Line 52 in April 2003. Figure 2 provides the detailed chronology of the journey of the 
North/South Line establishment. The construction of the North/South Line project is deemed to be 
controversial due to several geotechnical incidents, administrative problems, constantly increasing 

FIGURE 1. DETAILED MAP OF THE CITY OF AMSTERDAM IN 2020 
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estimated cost, several delays for the opening date, and severe loss of trust in the Gemeente Amsterdam 
(Mottee et al., 2020). However, Gemeente Amsterdam claimed that they have succeeded in completing 
the North/South Line. After 40 years of planning and 16 years of construction, the North/South Line 
project finally opened on July 22nd, 2018. The project was initially scheduled to be complete by 2007 
at the cost of about 1.4 billion euros. In contrast, it was completed 11 years after the initial date and at 
the cost of approximately 3.1 billion euros.  

The North/South Line connects the northern part of the Amsterdam (Noord) to the Centrum and the 
central business area in the southern part of Amsterdam (Zuid). The Metro Line 52 is a 9.7 kilometres 
metro link where 7.1 kilometres of the total length were built underground. This line is equipped with 
six new stations, including Europaplein, De Pijp, Vijzelgracht, Rokin, Noorderpark, Noord; and two 
existing stations, including the stations of Amsterdam Zuid and Amsterdam Central.  

It has been argued that one of the challenges in studying the impact of transportation is that it 
requires a quasi-experiment setup causing enormous changes in accessibility that are mainly hard to be 
found (Banister & Berechman, 2001; Fernald, 1999). I argue that the Metro Line 52 project produce 
significant changes in accessibility as the new line’s opening was accompanied by significant changes 
to the existing bus and tram systems to promote and support this new metro operation and remove any 
inefficient line. Later in this paper, I also provide graphical evidence showing that the opening of the 
Metro Line 52 can be a good case for quasi-experiment in this literature. 

FIGURE 2. TIMELINE OF KEY EVENTS OF THE METRO LINE 52 PROJECT 
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Empirical studies investigating the spatial impact of a transportation development project is prone 
to face simultaneity problem which makes it hard to investigate the flow of causality (Hoogendoorn et 
al., 2019). There has been argued that a transportation development project is placed to promote the 
economic growth of some particular areas; thus, the endogeneity problem arises. However, I argue that 
the Metro Line 52 establishment event can reduce the simultaneity bias in the study, as the project aims 
to reduce private vehicle usage and travel times, improve reliability and accessibility, and promote 
liveability 7  while not merely about improving the economic growth. Concerning dealing with 
endogeneity, this study assumes the moment of the opening of Metro Line 52 to be random. 

 
III. Data and Identification Strategy 

 
A. Data Sources 

 

This paper uses micro-data on Amsterdam’s housing prices provided by the Dutch cooperative 
association of real estate brokerage and appraisers in Netherlands (NVM/de Nederlandse coöperatieve 

Vereniging van Makelaars en taxateurs). This covers more than 75% of entire Dutch houses sold by 
NVM brokers8. The dataset covers 18 years of data collection from January 2002 until December 2020. 
Each property observation is geocoded at the precise residence level. The dataset contains detailed 
records of the transaction date, transaction price, six-digit postal code, and transactional and structural 
housing characteristics of the house transactions, such as the property size, age, sales condition, and 
size (see Appendix A for an overview of all variables used in this analysis). Table 1 presents the 
descriptive statistics which is divided into three primary columns, i.e., total sample, treatment group, 
and controlled group.  

Since the goal of this paper is to capture the effects of Metro Line 52 on house prices and to prevent 
possible boundary discontinuity problems, I restrict the sample to the houses that are located within the 
radius of a 1,000-meter service area that is derived from the network analysis, from each Metro Line 52 
station. Figure 3 represents the locations of the sample housing transactions and the Metro Line 52 
stations. I perform sensitivity analysis by expanding the radius to a 1,500-meter service area from each 
Metro Line 52 station. After performing several data selection procedures, it retains 23,668 observations 
in 2,161 6-digits postal codes. Appendix B describes another sample selection process that has been 
done in this study. The data have a panel structure and is surveyed daily, but a quarterly basis is used 
for the analysis.  

Apart from the house location and its characteristics, I also link other locational characteristics such 
as administrative borders, road-related networks, locations of tram and bus stations, and all metro 
systems, including Metro Line 52, that Gemeente Amsterdam provides. Using QGIS, I measure the 
distance between the location of each house transaction and the nearest Metro Line 52 hubs and use this 
distance measure as the core variable in this analysis. I use total-travel-cost network distance9 measured 
using QGIS Network Analysis Toolbox (QNEAT3), and it will be discussed further in the next section. 

 
B. Total-Travel-Cost Network Analysis for Distance Measures 

 

The model designed by Alonso (1964), Muth (1969), and Richardson & Mills (1973) regarding the 
resource allocation for a city, the so-called monocentric model, assumes that the land of a city has a 
plain and smooth terrain. However, I argue that ignoring spatial and topography obstacles can lead to a  

 
7 Source: Gemeente Amsterdam (2018) https://noordzuidlijn.wijnemenjemee.nl/lijnennet/over/ 
8 Source: de Nederlandse Coöperatieve Vereniging van Makelaars (2021)  
9 The term “total-travel-cost network distance” is used interchangeably with the term “network distance” in this paper 
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Table 1. 

Descriptive Statistics 

     

 Total Sample  Treatment Group  Controlled Group 

   Total-Travel-Cost 
Network Distance ≤ 537 m 

 Total-Travel-Cost Network 
Distance > 537 m 

Observation 23,668  7,379  16,289 

     Mean   Std. Dev.    Mean   Std. Dev.    Mean   Std. Dev. 
Sales price (EUR) 439,372.07 322,450.16  398,019.76 279,223.03  458,104.87 338,579.41 
Sales price/sqm (EUR) 4,574.632 1,902.184  4,622.731 1,691.31  4,552.843 1,990.039 
Log (Sales price) 12.809 .581  12.729 .544  12.846 .593 
Log (Sales price/sqm) 8.36 .369  8.38 .34  8.351 .381 
Network distance to  
  Metro Line 52 station  
  (m) 

656.258 221.306  385.468 107.818  778.927 132.781 

Log (Network distance to  
  Metro Line 52 station) 

6.412 .424  5.901 .361  6.643 .175 

Size of property (m2)  95.74 50.25  86.823 47.313  99.779 51.016 
Log (size of property) 4.45 .463  4.349 .465  4.495 .456 
Property types         
  Apartment .9 .301  .94 .238  .881 .323 
  Terraced .08 .271  .047 .212  .094 .293 
  Semi detached .017 .128  .01 .099  .02 .139 
  Detached .004 .065  .003 .057  .005 .068 
Parking .07 .255  .084 .278  .064 .244 
Number of bathrooms .965 .553  .94 .527  .976 .564 
Number of kitchens .803 .496  .798 .489  .806 .499 
Number of balconies .475 .544  .483 .547  .471 .542 
Number of roof terraces .169 .39  .155 .377  .176 .396 
Owned private office  0 .009  0 .016  0 0 
Maintenance score of the   
  Outside 

.791 .118  .798 .123  .788 .115 

Maintenance score of the  
  Inside 

.788 .157  .801 .154  .781 .157 

Good maintenance  .887 .317  .9 .301  .881 .324 
Number of insulation  
  types 

1.337 1.659  1.535 1.769  1.247 1.598 

Central heating  .877 .329  .868 .339  .881 .324 
Listed property  .101 .301  .063 .243  .118 .323 
Monumental property  .093 .291  .071 .256  .103 .305 
Auction sales  .001 .038  .002 .044  .001 .036 
Leasehold  .391 .488  .27 .444  .446 .497 
Property is partly rented  .003 .057  .004 .06  .003 .055 
Period of construction         
  Before 1906 .367 .482  .444 .497  .333 .471 
  Between 1906 and 1930 .302 .459  .27 .444  .317 .465 
  Between 1931 and 1944 .076 .265  .033 .178  .096 .295 
  Between 1945 and 1959 .027 .161  .018 .133  .03 .172 
  Between 1960 and 1970 .031 .174  .02 .138  .037 .188 
  Between 1971 and 1980 .028 .165  .029 .167  .028 .165 
  Between 1981 and 1990 .039 .194  .038 .191  .039 .195 
  Between 1991 and 2000 .053 .225  .061 .239  .05 .219 
  2000 and later .075 .264  .088 .283  .07 .255 
Network Distance to other  
  nearest metro station (m) 

1,405.946 819.344  1,453.668 665.044  1,384.328 879.554 

Network distance to the  
  nearest tram station (m) 

508.117 780.713  367.584 595.474  571.779 843.814 

Distance to Centrum 2069.819 1066.49  1939.114 887.401  2129.028 1133.46 
Distance to CBD 2638.69 1676.823  2383.23 1363.471  2754.415 1788.992 
Log (network distance to  
  other nearest metro  
  station) 

7.1 .558  7.168 .509  7.069 .577 

Log (network distance to  
  the nearest tram station) 

5.724 .857  5.489 .725  5.83 .89 

Log (distance to Centrum) 7.457 .676  7.428 .603  7.47 .706 
Log (distance to CBD) 7.684 .655  7.637 .549  7.705 .697 



10 

bias estimation in an analysis of the impact of infrastructure development. In practice, a government 
mainly uses zoning and land use planning to monitor and control the population density and the supply 
of land in a city. Furthermore, a zoning regulation is mainly formulated by considering the spatial and 
topography obstacles in a city, as Albert (2010) argues that spatial regulations are dependable according 
to the geography and topography of a city. Therefore, most Euclidean distance studies found in the 
literature of the infrastructure development impact are prone to produce bias results.  

The use of Euclidean distance is widespread in this literature. The Euclidean distance can be an 
appropriate approach if the world is viewed as a two-dimension without considering topography 
obstacles. Euclidean distance seems to be an incorrect tool to measure an RTS station’s distance to a 
house. RTS tends not to be constructed in a place where the surroundings are flat with straight 
topography lands. Instead, it is usually built in an area surrounded by natural obstacles such as rivers, 
inclines, ponds, trees; and infrastructure obstacles such as buildings, highways, and railroads.  

A number of studies suggest using network analysis to handle the problem that arises from using 
the Euclidean approach as it considers geography and topography features (see Diao, Leonard, et al., 
2017; Hess & Almeida, 2007; Higgins, 2019). However, the distances based on the length of a network 
are likely to produce a biased estimation. In practice, standard network analysis tends to face incomplete 
datasets, which cause imprecise measurement of network distance due to some unobserved networks 
that are not considered in the analysis. Spatial analysts tend to forcibly join the nodes of the house 
observations and the RTS stations to the existing network line; thus, any unobserved network between 
the house observation or the RTS station and the existing network line is not taken into account.  

In this paper, I propose to use both the Euclidean and network analysis approaches to measure 
Euclidean distances from the start point to the existing network and from the existing network to the 
endpoint; and the walking distance in the network, respectively. This approach hereafter is referred to 

FIGURE 3. METRO LINE 52 AND HOUSE TRANSACTION WITHIN 1,000-METER NETWORK BUFFER 
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as the total-travel-cost network analysis approach. Figure 4 illustrates the difference between the total-
travel-cost network analysis, the standard network analysis, and the Euclidean approaches. Figure 4 
shows that the house owner in the street of Malvastraat in Amsterdam requires to walk approximately 
883 meters from the exit door of his house to the nearest metro line 52 station, which is the Noorderpark 
station. In contrast, the distance generated from standard network analysis is around 60 meters shorter 
than the total-travel cost network distance. The difference between both analyses is that the total-travel-
cost network analysis considers the distance gap between the origin point and the network line that is 
usually unobserved. The total-travel-cost analysis uses a straight line towards the nearest existing 
network line to handle the unobserved line and correct the measurement error due to unobserved 
additional distance. Furthermore, the gap is much larger when the total-travel-cost network distance is 
compared with Euclidean distance. I will show that using total-travel-cost network distance is better as 
it can correct the measurement error commonly occurred in Euclidean and network analysis studies.  

 This paper uses pedestrian and cycleway networks data, as it represents a more behaviorally 
relevant proxy for accessibility, especially in Amsterdam. I overlay the pedestrian and cycleway 
networks layer onto the base layer of spatial data of house transactions and Metro Line 52 stations. 
Using the QNEAT3 feature in QGIS, I measure the shortest total-travel-cost distance for all sample 
homeowners to walk to their nearest Metro Line 52 stations. To the best of my knowledge, this study is 
probably the only one study in the literature of the effects of RTS on house price that uses total-travel-
cost network analysis. For a robustness check, I also add the result from using Euclidean distance and 
standard-network distance in the main analysis. 

 
  

FIGURE 4. THE DIFFERENCE BETWEEN TOTAL-TRAVEL-COST NETWORK ANALYSIS, STANDARD NETWORK 
ANALYSIS, AND EUCLIDEAN APPROACH 
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C. Local Polynomial Regression for Treatment Assignment  

 
In designing a quasi-experiment in this literature, it is commonly required to set the treatment areas 

that can vigorously represent the affected area derived from the change in accessibility. Some studies 
propose to use a 1 km distance from the RTS station to be the catchment area of the study (see 
Bartholomew & Ewing, 2011; Chin et al., 2020). A few other studies determine a discrete buffer zone 
of 400 meters from the RTS station to set the spatial boundaries of the accessibility effect, as it is argued 
that a 400-meter distance is an acceptable distance for people to walk (Untermann, 1984).  

However, a number of studies suggest using the local polynomial regression10, or so-called Fan 
regression (Fan, 1992; Fan & Gijbels, 1994), to perform the treatment assignment in a quasi-experiment 
project related to the housing market. Linden & Rockoff (2008) propose to use Fan regression in a 
criminal quasi-experiment study. After the sex offenders arrive at the neighbourhood, they find a local 
negative effect occurring on the house prices located close to the area where the sex offenders move in. 
They also find that the effect dissipates quickly when the house’s location is getting further away from 
the location of the sex offenders’ arrival. They also find no effect on the houses located at a certain 
distance from the location of the sex offenders’ arrival. They provide graphical evidence using local 
polynomial regression that shows large differences in house prices before and after the sex offenders 
arrive. The large differences can be seen in the houses located within 0.1 miles and the houses located 
between 0.1 and 0.3 miles from the sex offenders’ arrival location. Furthermore, Diao, Leonard, et al. 
(2017) apply a similar approach to investigate whether there is any differential non-linear treatment 
effect on houses located close to RTS stations and identify the distance boundary where the 
discontinuity occurred. 

Building on a similar approach, I use local polynomial regression to identify the certain cut-off 
distance where large differences in house prices before and after the opening of the RTS and the 
discontinuity in housing price in such cut-off distance can be clearly seen. The basic concept behind 
this method is that it can be a convenient way to describe the disproportional price responses due to the 
change in accessibility in a simpler way. It is also argued that house prices that are close to an RTS 
station have a nature of non-linearities due to the housing supply that tends to be inelastic. Since the 
local polynomial regression can allow for non-linearities in house prices, this approach is deemed to be 
a more appropriate method to correct such a problem and for treatment assignment. Later on in this 
paper, I will show that the treatment group is assigned based on whether the location of a house is inside 
the 537-meter network-distance buffer or not. 

Even though the approach is very similar to the works of Diao, Leonard, et al. (2017), the difference 
can be found in how I perform the parameter tuning, especially for tuning the bandwidth (λ). It is not 
clear how Diao, Leonard, et al. (2017) and Linden & Rockoff (2008) set the bandwidth. However, the 
bandwidth in this analysis is set based on the standard deviation of the network distance variable from 
the sample, which is 221.30 (see Table 1). Hastie et al. (2009) argue that when the Gaussian Kernel is 
assumed, the bandwidth (λ) should be equal to the value of standard deviation.  

 
D. Graphical Evidence  

 

If the housing services close to the RTS station are really attractive, we can expect that the prices 
of the houses close to the RTS stations should go up after the RTS opens for service. We can also expect 
that the closer the house to the station, the higher the price of the house. Figure 5A illustrates the price 
gradients of housing in Amsterdam using local polynomial regression with respect to the network 

 
10 Local polynomial regression is a nonparametric regression method and one of the kernel smoothing methods where it estimates a 
correlation between two variables to illustrate a smoothing curve. 
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distance from house observations to the nearest Metro Line 52 stations after the Metro Line 52 opens 
for service. The one year (six months before and after the opening of Metro Line 52) is set as the time 
window for this analysis which is similar to the work of Linden & Rockoff (2008). This time window 
is set as a preventive measure against any other confounding factors that might influence the effect of 
the new metro line on housing price. The house prices located closest to the station have the highest 
price, and the prices are getting lower as the house’s location moves away from the station. It seems 
that the result from this graphical evidence is aligned with the conceptual framework of the bid rent 
curve, where the prices are highest for houses that are closest to an attractive place and get smaller as 
the distance increases. 

I also contrast the result with the price gradient of network distance to the station before the opening 
of Metro Line 52, which is illustrated in Figure 5B. The figure shows that both gradients are starting to 
resemble from the network distance of 400 meters to 650 meters and are tangent in the network distance 
of 537 meters. The diagram shows that the positive effects start to shrink from the distance of 400 m, 
and finds no effect after the location of a house crosses the distance of 537 meters.  

It is argued that the causal impact can be conveyed for the above case if the increase of the prices 
is parallel with the opening of Metro Line 52, and after controlling any other factors (e.g. locational, 
structural, and transactional characteristics), there is no significant anticipation effect before the opening 
of the new metro. Both conditions can be observed by looking at the Figure 6A and 6B. In addition, 
the latter condition will be further discussed in the next section. Figures 6A and 6B represent the price 
gradients of the date of the house transactions concerning Metro Line 52. The measurement of the 

FIGURE 5A. PRICE GRADIENT OF NETWORK DISTANCE FROM METRO LINE 52 STATION 
(Transactions during the year after opening) 

 

Note: The result from local polynomial regressions with a bandwidth of 221 meters. 
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gradients is performed separately according to whether the houses that are located within 537 meters 
are transacted before or after the opening of Metro Line 52. The time window for this analysis is set to 
2 years before and after the opening following Linden & Rockoff (2008).  

If the anticipation effect does exist, we can expect that the increase in price occurs gradually during 
the time period before and after the opening of the metro system. As it turns out, the price trend 
witnesses a gradual increase before the opening of Metro Line 52 but witnesses a sudden huge increase 
afterwards. Figure 6B contrasts the price gradient of the date of the house sales located beyond 537 
meters from the nearest station with the price gradient in Figure 6A. The difference between both 
gradients can be found in the curve of the houses located beyond 537 meters that continues, while the 
other curve is discontinuing and experiences a sudden increase after the Metro Line 52 opens. Generally, 
both groups of houses are still close to each other as they are all located within 1,000 meters from Metro 
Line 52 stations, as depicted in Figure 3. The question can be asked whether both groups of houses 
would have had the same price movement if the Metro Line 52 had not been established. The prices of 
the houses located beyond 537 meters are quite similar to the group of houses that are closer to the 
station prior to the opening of the metro. Thus, the group of houses that are slightly farther away from 
the affected areas can be used as the untreated group of house observations in this quasi-experiment. 
 
  

FIGURE 5B. PRICE GRADIENT OF NETWORK DISTANCE FROM METRO LINE 52 STATION 
(Transactions during the year after opening) 

 

Note: The result from local polynomial regressions with a bandwidth of 221 meters. 
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E. Empirical Design: The Linear Specification 

 
The hedonic price model is by far the most popular model used in this mature topic. However, many 

extended versions, innovations, and new frameworks for identification strategy have been developed to 
correct endogeneity problems commonly occurred in conventional hedonic strategy. In earlier studies, 
the concept of “before-and-after” is used, where a set of dummy time-variables is added into the hedonic 
price specification, and cross-sectional real estate data pooled over time is used. The study by McDonald 
& Osuji (1995) was the first to use this method. The model can be specified as follows: 

 𝑦𝑖𝑡 = 𝛼 + 𝛽 𝑋𝑖𝑡 + 𝛾 𝐷𝑖𝑡 + 𝛿 𝐻𝑖𝑡 + 𝘀𝑖𝑡 

 
where 𝑦𝑖𝑡 is a vector of log-transformed housing price; 𝛼 is a constant term; 𝑋𝑖𝑡 is a vector of variable(s) 
of interest; 𝐷𝑖𝑡 is a vector of time dummies variable representing time fixed effects; 𝐻𝑖𝑡 is a vector of 
housing attributes; 𝘀𝑖𝑡 is the error term; and 𝛽, 𝛾, and 𝛿 are the parameters to be estimated.  Housing 
attributes includes housing transactional, structural, and locational characteristics.   

Furthermore, Gibbons & Machin (2005)’s work improved this concept by applying the difference-
in-difference methodology to prevent the analysis from biases that are usually occurred in a cross-
sectional study, for instance, some unobserved characteristics that are correlated with the accessibility 
and housing prices and the change of accessibility over time that is not accounted can lead to biased 

FIGURE 6A. PRICE TRENDS BEFORE AND AFTER THE OPENING OF METRO LINE 52  
(House transactions within 537 meters from the nearest Metro Line 52 station) 

 

Note: The result from local polynomial regressions with a bandwidth of 140 days 
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estimates. By adding time fixed effect accounting for the time temporal dynamics in the housing market, 
denoted as 𝜏𝑡; and spatial fixed effects accounting for spatial features within a specific neighbourhood, 
denoted as 𝜑𝑗; the specification can be upgraded as follows:  

 𝑦𝑖𝑡 = 𝛼 + 𝛽 𝑋𝑖𝑗𝑡 + 𝛿 𝐻𝑖𝑗𝑡 + 𝜑𝑗 + 𝜏𝑡 + 𝘀𝑖𝑗𝑡 

 
 

The time fixed effect used in this analysis accounts for the quarter temporal dynamics in the 
Amsterdam housing market. Also, I use Amsterdam 6-digits postal code to represent the spatial features 
within the postal boundary. In the DID setting, causal effects can be determined as an estimation process 
of a counterfactual that changes over time for the treated group assuming the treatment does not occur. 
Athey & Imbens (2017) argue that this method assumes the change in outcomes over time for the control 
group is informative about the change in the treatment group in the absence of the treatment. Thus, the 
analyst should appoint each observation into the treated group and the control group. Most studies set 
the treatment area arbitrarily. However, this paper implements the local polynomial regression approach 
to determine whether the observation is assigned to the treatment group. Considering treated and 
untreated groups, thus, the specification for 𝛽 𝑋 would be: 

 𝛽 𝑋𝑖𝑗𝑡 =  𝛽1𝑇𝑟𝑒𝑎𝑡𝑖  + 𝛽2𝑃𝑜𝑠𝑡𝑡 + 𝛽3(𝑇𝑟𝑒𝑎𝑡𝑖 ×  𝑃𝑜𝑠𝑡𝑡) 

 

FIGURE 6B. PRICE TRENDS BEFORE AND AFTER THE OPENING OF METRO LINE 52  
(Contrasting the house transactions within and beyond 537 meters from the nearest Metro Line 52 station) 

 

Note: The result from local polynomial regressions with a bandwidth of 140 days 
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where the variable 𝑇𝑟𝑒𝑎𝑡𝑖 is a dummy variable indicating whether or not the individual observation is 
in the treated group; the variable 𝑃𝑜𝑠𝑡𝑡  is also a dummy variable indicating whether the house 
transaction has taken place after the RTS operates; 𝛽1 and 𝛽2 are the parameters to be estimated; and 𝛽3 measures the average treatment effect. To specify the treatment area, I split the sample based on 
whether the network distances of the observations are within 537 meters. Thus, the houses located 
outside the 537-meter network-distance buffer are assigned to the controlled group. This robust 
empirical design has been considerably used in several papers related to the literature on the effect of 
an opening of RTS on housing price. 

 
F. Empirical Design: Machine Learning Approach 

 

This paper adopts the causal tree and honest approaches proposed by Athey and Imbens (2016). 
Causal tree approach was originally driven from the CART algorithm written by Breiman, Friedman, 
Olshen, and Stone (1983), where it focuses on estimating the heterogenous treatment effect and 
constructing valid confidence intervals for treatment. Similar to the standard regression tree, the causal 
tree is also grown based on a splitting rule which aims to minimize the risk function.  

One of the distinguishing parts is that the causal tree estimates the average treatment effects within 
each leaf instead of the average of the dependent variable within each leaf. An analyst should specify a 
dummy treatment variable to tell the algorithm to take the difference between the sample average of the 
treated and untreated groups within the leaf. In machine learning, the selection of a model requires 
setting a specific tuning parameter to prevent from overfitting problems. This tuning parameter value 
is primarily chosen by performing cross-validation. In the case of tree-based machine learning, cross-
validation is implemented by penalizing the number of nodes in the tree. In pruning the causal tree, the 
leaves are chosen based on the chosen risk function calculated while the tree is grown. 

Another distinctive feature is that the causal tree is mainly performed along with the performance 
of honest estimation. This honest approach aims to estimate the treatment effect within the leaves of a 
tree by using an independent estimation dataset instead of using the dataset that has been previously 
used for building and pruning the tree. To perform a causal tree with an honest approach, the analyst 
first splits the datasets into two, i.e., training set and estimation set, and then uses the training set to 
build and prune the tree. Next, the pruned tree is used as the basis of the tree used for estimating the 
treatment effect using the estimation set. In the estimation process, the leaf estimates will be replaced 
by the new estimates calculated from using the estimation set. 

The advantage of using these approaches is that it can answer one of the main questions asked in 
this paper, i.e., about finding the specific properties that have the highest treatment effect from the 
establishment of Metro Line 52. This analysis includes the same variables used in the linear estimation 
where the post and treated area dummies are used as the binary treatment variable, and other covariates 
(including the structural, transactional, and characteristics) used as the splitting variables in growing 
the causal tree. The dependent variable of interest is the log housing price per square meter. The honest 
causal tree functions are used as the splitting rule in growing the tree and used in pruning the tree in the 
cross-validation process. This analysis is based on a similar conceptual framework proposed by Chin et 
al. (2020) where the approach is to estimate the conditional average treatment effect (CATE) in the DID 
framework within each leaf using CausalTree R package11 , which can be mathematically specified as 
follows: 

 𝐶𝐴𝑇𝐸 = {𝐸[𝑌|𝑋 = 𝑥, 𝐷 = 1, 𝑇 = 1] − 𝐸[𝑌|𝑋 = 𝑥, 𝐷 = 0, 𝑇 = 1]}                        −{𝐸[𝑌|𝑋 = 𝑥, 𝐷 = 1, 𝑇 = 0] − 𝐸[𝑌|𝑋 = 𝑥, 𝐷 = 0, 𝑇 = 0]} 
 

11 CausalTree R package is available at https://github.com/susanathey/causalTree 
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However, this analysis modifies the algorithm used by Chin et al. (2020) where instead of setting 
the treated area dummy as the binary treatment variable, this analysis sets the interactive terms of the 
treated areas and post-event dummies as the binary treatment variable in the causal tree setup as it can 
estimate the CATE better, especially in a single tree algorithm setup. I argue that setting only the treated 
area dummy as the binary treatment variable in the causal tree setup can lead to an incorrect 
specification in estimating CATE in a leaf as there is a high tendency that the regression tree will split 
the data based on post dummy, which is not a desirable case. As a result, the CATE will not represent 
the average treatment effect but only represent the housing price differences between the treated areas 
relative to the untreated areas either before or after the Metro Line 52 starts to operate. 

 
IV. Empirical Result 

 

A. The Pre-Treatment Trend 

 
In conducting the analysis of the impact of a transportation development project using a difference-

in-differences approach, it is essential to check whether there is an anticipation effect that occurs before 
the opening of the new transportation service. This can be done by checking whether the price trends 
of the treated groups are not statistically different from zero over time. Based on the graphical evidence 
produced by the application of local polynomial regression, I define the treated group as the group of 
houses located within 537 meters from Metro Line 52 stations and assign the rest of the observations 
into the untreated group. I estimate the temporal variations in the treatment effects using a specification 
as follows: 𝑦𝑖𝑗𝑡 = 𝛼 + 𝛽1 𝑊𝑖𝑡ℎ𝑖𝑛537𝑖 + ∑ 𝛽𝑧2020/2

𝑧=2002/1 𝑊𝑖𝑡ℎ𝑖𝑛537𝑖 × 𝐻𝐴𝐿𝐹𝑌𝐸𝐴𝑅𝑧 + 𝛿 𝐻𝑖𝑗𝑡 + 𝜑𝑗 + 𝜏𝑖𝑗𝑡 + 𝘀𝑖𝑗𝑡 

 
where 𝑊𝑖𝑡ℎ𝑖𝑛537𝑖  is a dummy variable representing whether a housing observation is located 

within 537-meter network-distance from future Metro Line 52 stations or not; 𝐻𝐴𝐿𝐹𝑌𝐸𝐴𝑅𝑧 is a bi-
annual time dummy variable; 𝐻𝑖𝑗𝑡 is a set of housing characteristics; 𝛽𝑧 is the interaction parameters 

between year dummy and treatment dummy; and 𝜏 and 𝜑 are quarterly time and 6-digits postcode fixed 
effects, respectively. Figure 7 describes the interaction coefficients between the treatment dummy and 
year dummy, which represent the temporal variations in the treatment effect of the future opening of 
Metro Line 52. The figure shows a fluctuating trend during the periods before the opening event and a 
slight negative trend followed by positive trends, with some of it are statistically significant happening 
after the event of the metro opening. However, a more comprehensive study investigating the treatment 
effect after the opening of the metro line on housing prices within a 537-meter network distance will be 
discussed further in the next subsection.  

If there is an anticipation effect, then it can be expected that the interaction coefficients before 2018 
would be positive and statistically different from zero. However, the figure shows that from the year 
the Metro Line 52 project was approved and announced in 2002 until the opening, the effect of the 
future new metro line had not been statistically significant, while it becomes statistically significant at 
1% in a period within the post-opening periods. I argue that the result shows no significant anticipation 
effect due to the negative sentiment perceived by the community about the controversies that had been 
going during the years prior to the opening along with the uncertainty of this project. This uncertainty 
causes no change in the expectations of the housing price, leading to no anticipation effect. Besides 
uncertainty, it is also probable that there is no significant effect on pre-trend analysis because almost all 
the construction works were taken place underground. Noises that are normally produced due to a 
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construction and a trigger of a decline in house price might not be the main driver in this analysis. 
Another possible reason is that the construction work requires a very long time to finish. Since the 
construction time is very long, even though there is an anticipation effect, it might not occur 
immediately after the plan was accepted and announced. In contrast, it is more likely to occur a few 
months or years before the opening.  

The date of the Metro Line 52 opening was finally announced a few months prior to the opening 
via the local media. Therefore, there can be a case where there is a reaction in the housing market a few 
months or a year before the opening of the Metro Line 52. Figure 7 also shows that there is an almost 
significant positive trend that emerged a year before the Metro Line 52 starts to operate while 
diminishing until the date of the opening. To check whether there is an anticipation effect before the 
opening, I slightly modify the baseline of the difference-in-difference approach and eventually add 
some other dummy variables representing whether a housing transaction is made during a year and a 
half year before the opening denoted as 𝑃𝑜𝑠𝑡𝑡−12  and 𝑃𝑜𝑠𝑡𝑡−6 , respectively. I also add a dummy 
variable representing whether a transaction is made after the opening of Metro Line 52, denoted as 𝑃𝑜𝑠𝑡𝑡=0, and a dummy variable representing the transactions made between a year and a half-year 
before the opening denoted as 𝑃𝑜𝑠𝑡(𝑡−12)−(𝑡−6) . Table 2 summarized the result from the modified 

models. 
The result from column 1 shows that the treatment effect for the one-year pre-opening is positive 

and statistically significant at 5%. I further add the post dummy into the model and find that the effect 
for the one-year pre-opening becomes more statistically and economically significant. This can be an 
indication that anticipation effects occur a year before the opening of the new metro line. Furthermore, 
I also test whether the anticipation effect occurs six months before the opening. Column 3 explains that  

FIGURE 7. INTERACTION COEFFICIENTS REPRESENTING TREATMENT EFFECTS OVER TIME 
(With 99% confidence intervals) 
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the treatment effect for the half-year pre-opening is also positive but not statistically significant. This 
result is still consistent when the post dummy is added (see column 4). There seems to be a diminishing 
trend starting from the beginning to the end of the one-year pre-opening period. Therefore, I test whether 
there is a heterogeneity in the anticipation effect within the period of one year before the opening by 
adding 𝑃𝑜𝑠𝑡(𝑡−12)−(𝑡−6) into the model. The anticipation effect coming from the dummy 𝑃𝑜𝑠𝑡(𝑡−12)−(𝑡−6) , representing the house transactions made between July 22nd 2017 and January 22nd 

2018, turns out to be economically and statistically significant at 1%, while I find no effect for houses 
transacted six months before the opening. This indicates that the anticipation effects are significant as 
early as one year prior to the opening, while the effects become insignificant the moment before the 
new metro line starts to operate. 

Table 2.  

Sensitivity Tests: The analysis of anticipation effects within one year or a half year before the 
opening of Metro Line 52.  

 

      (1)   (2)   (3)   (4) (5) 
       One year 

pre-opening 
   One year pre-

opening and 
post-opening 

   A half-year 
pre-opening 

   A half-year 
pre-opening and 

post-opening 

Biannual year 
pre-opening and 

post-opening 
Within 537 meters -.0141 -.0193 -.0127 -.0174 -.0194 
   (.0124) (.0125) (.0124) (.0125) (.0125) 
 𝑃𝑜𝑠𝑡𝑡−12 .0053 .0038    
 (.0142) (.0175)    
 𝑃𝑜𝑠𝑡(𝑡−12) − (𝑡−6)      -.0012 
     (.0178) 
 𝑃𝑜𝑠𝑡𝑡−6   .0092 .0029 .0077 
   (.0171) (.0224) (.0288) 
 𝑃𝑜𝑠𝑡𝑡=0  -.01  -.0172 -.0121 
   (.0275)  (.0304) (.0351) 
Within 537 m ×  .0221* .0276**    
  𝑃𝑜𝑠𝑡𝑡−12 (.0101) (.0104)    
Within 537 m ×      .0447** 
  𝑃𝑜𝑠𝑡(𝑡−12) − (𝑡−6)      (.0141) 
Within 537 m ×    .0026 .0076 .01 
  𝑃𝑜𝑠𝑡𝑡−6   (.0137) (.0139) (.0139) 
Within 537 m ×   .0337***  .0321*** .0337*** 
  𝑃𝑜𝑠𝑡𝑡=0  (.0086)  (.0085) (.0086) 
Observations 23,668 23,668 23,668 23,668 23,668 
R-squared .7202 .7205 .7201 .7204 .7205 
Adj R2 .7189 .7191 .7188 .7191 .7191 
Transactional 
characteristics 

Yes Yes Yes Yes Yes 

Structural 
characteristics 

Yes Yes Yes Yes Yes 

Locational 
characteristics 

Yes Yes Yes Yes Yes 

Quarterly fixed effect Yes Yes Yes Yes Yes 
Postcode fixed effect Yes Yes Yes Yes Yes 
Notes: The table displays the results of panel regressions with log housing price per square meter as the dependent variable 

and housing structural characteristics (e.g. log size, dummies representing property types, parking dummy, number of 

bathrooms, number of kitchens, number of balconies, number of roof terraces, office room dummy, maintenance score of 

the inside, maintenance score of the outside, good maintenance dummy, number of insulation types, central heating dummy, 

listed property dummy, and monumental property dummy), housing transactional characteristics (auction dummy, 

leasehold dummy, partly rented property dummy, and dummies representing years of construction) and housing locational 

characteristics (log network distance to the nearest tram station, and log network distance to the nearest metro station 

other than Metro Line 52 station) as the control variables. The quarterly time and postcode (6-digits) fixed effects are used 

in the estimations. The treatment estimations are defined by the total-travel-cost network distance of 537 meters from Metro 

Line 52 stations. 𝑃𝑜𝑠𝑡𝑡=0 is a dummy variable indicating the opening of Metro Line 52. 𝑃𝑜𝑠𝑡𝑡=6 and 𝑃𝑜𝑠𝑡𝑡=12 are dummy 

variables indicating whether a housing transaction is made one year and a half year, respectively, before the opening. The 

interaction between treatment variable and each of the time dummy indicates the treatment effects of the opening of Metro 

Line 52 on housing price for each time period. Robust Standard errors are in parentheses and the standard errors are 

clustered at the postcode (6-digits) level. 

*** p<.001, ** p<.01, * p<.05  

  



21 

These results show a strong indication that there is an anticipative action that occurred one year 
before opening the new metro line. However, these anticipation effects do not occur most of the time 
in the pre-opening period and even a few months prior to the opening of the Metro Line 52. Therefore, 
these pre-trend analyses can indicate that the design of the quasi-experiment applied in this paper and 
the difference-in-difference approach can still be assumed to be suitable for estimating the effect of a 
new metro line investment on the Amsterdam housing market.  

 
B. Average Treatment Effect of Metro Line 52 on Housing Prices using OLS 

 
Table 3 shows the results for the linear specifications described in the section of Empirical Design12.  

Building on McDonald & Osuji (1995), the first column describes the conventional standard hedonic 
pricing model in which the model controls for time fixed effects and housing characteristics using 
quarterly time dummies variable as well as other housing characteristics variables in a cross-sectional 
setting.  Column 2 adds postcode dummies into the model to control for spatial fixed effect. Column 3   
describes the base model, i.e., the panel estimates using the difference-in-differences approach. In this 
model, I cluster the unobserved spatial and time heterogeneities in the housing prices by adding 
postcode fixed effects (2,161 postal codes) and quarterly time fixed effects (76 quarters in the 
transaction date). Column 4 expands the study area into the houses located within 1,500-meter total-
travel-cost network distance. Finally, column 5 modifies the base model by including the interaction 
terms between the average treatment effect and housing characteristics to test whether there is 
heterogeneity in the treatment effect across housing characteristics. All models aim to estimate the 
impact of the opening of Metro Line 52 on housing prices which is represented by an interactive term 
that is included in each model. 

In columns 1 and 2, the coefficient of the interactive term between Log Distance to the Nearest 
Metro Line 52 Station and Post dummy represents the treatment effect in the cross-sectional design. 
Both models show a negative sign of the coefficient, which are as expected because the lower the 
distance is, the higher the house price will be. However, the cross-sectional model in column 2 shows 
a smaller magnitude compared to the previous model. This is an indication that there is still unobserved 
heterogeneity that is not considered in model 1. The result of model 2 shows that an extra 1% reduction 
in the distance from Metro Line 52 station is associated with a 2.85% increase in house price.  

I further explore the result by including a dummy variable representing houses located within 537-
meter total-travel-cost network distance to the nearest metro station and interact it with the post dummy 
variable to capture the average treatment effect in the panel estimation setup. All else equal, houses 
located within the treatment area witness a 3.18% capitalization relative to the houses located in the 
controlled area (see column 3). This result also implies that the new metro line in Amsterdam increases 
the willingness to pay of the buyers for houses that enjoy better accessibility. 

The coefficients of the Post and Within537 dummies in column 3 also shows a negative sign. It 
indicates that there is a general downward price trend occurring after the opening event, and there is a 
price discount on average for houses located within 537-meter total-travel-cost network distance from 
Metro Line 52 station relative to other houses located outside the treatment area, respectively. It seems 
that the result in column 2 is overly estimated, as it shows a significant and strong positive trend after 
the opening of Metro Line 52, while the result in column 3 does not. Thus, column 3 affirm that there 
is still unobserved spatial heterogeneity that has not been controlled in column 2. 

This result also reveals that the capitalization effects captured from the first two models are 
probably underestimated. It is assumed earlier that the capitalization effect is only received by the 
houses located within the treatment area. Later in the next subsection, I will show that there is a clear 

 
12 Table 3 only contains the estimates of the interest variables. The estimates of other control variables can be seen in Appendix A.  
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capitalization effect with proximity to a Metro Line 52 station for houses located within the treatment 
area, while the results find no effect on houses located beyond the treatment area. 

I also explore how much the realized gains in housing value are associated with the opening of 
Metro Line 52. I quantify the capitalization effect by considering the increases of accrued housing value 
within the treatment area. According to the result in column 3 and the average sales price per square 
meter for house transactions located within the treatment area which is EUR 4,622.73 per square meter 

Table 3. 
Panel linear estimates of the value of metro access 

 (1) (2) (3) (4) (5) 

 
Standard Hedonic 

Controlling for 
Time Fixed Effect 

Standard Hedonic 
Controlling for Spatial 
& Time Fixed Effects 

Base 
Model 

Base 
Model 

Model to Test for 
Heterogeneity in 
Treatment Effect 

Study Boundary      1,000 m    1,000 m    1,000 m    1,500 m    1,000 m 
Post  .1845** .1703** -.0226 .0001 -.1907 
   (.0589) (.0529) (.0217) (.0138) (.1516) 
Log (Distance to the .0947*** .0092    
  nearest Metro Line 
  52 Station in meter) 

(.0034) (.0213)    

Log (Distance to the -.033*** -.0285***    
  nearest Metro Line 
  52 Station in meter) ×  
  Post 

(.0084) (.0076)    

Within 537 m   -.0171 -.0149 -.0895 
     (.0124) (.0123) (.2338) 
Within 537 m ×  Post   .0318*** .0231** .1035 
   (.0084) (.0075) (.2674) 
Within 537 m ×  Post ×     -.049* 
  Log Distance to CBD     (.0229) 
Within 537 m ×  Post ×     -.2786* 
  Detached     (.1162) 
Within 537 m × Post ×     -.063* 
  Parking     (.0309) 
Within 537 m × Post ×     .3251** 
  Partly Rented     (.0992) 
Within 537 m × Post ×     .0383** 
  Log Distance to the   
  Nearest Tram Station 

    (.0134) 

Observations 23,668 23,668 23,668 41,795 23,668 
R-squared .6879 .8316 .7204 .7268 .7271 
Adj R2 .6864 .8138 .7191 .7261 .7248 
      
Transactional 
characteristics 

Yes Yes Yes Yes Yes 

Structural 
characteristics 

Yes Yes Yes Yes Yes 

Locational 
characteristics 

Yes Yes Yes Yes Yes 

Quarterly fixed effect Yes Yes Yes Yes Yes 
Postcode fixed effect No Yes Yes Yes Yes 
Notes: The table displays  the results of cross-sectional (model 1 and 2) and panel regressions (models 3 to 5) with log 

housing price per square meter as the dependent variable and housing structural characteristics (e.g. log size, dummies 

representing property types, parking dummy, number of bathrooms, number of kitchens, number of balconies, number of 

roof terraces, office room dummy, maintenance score of the inside, maintenance score of the outside, good maintenance 

dummy,  number of insulation types, central heating dummy, listed property dummy, and monumental property dummy), 

housing transactional characteristics (auction dummy, leasehold dummy, partly rented property dummy, and dummies 

representing years of construction) and housing locational characteristics (log network distance to the nearest tram station, 

and log network distance to the nearest metro station other than Metro Line 52 station) as the control variables. The 

quarterly time and postcode (6-digits) fixed effects are used in the estimations. The treatment estimations are defined by 

the total-travel-cost network distance of 537 meters from Metro Line 52 stations. Post takes 1 if a house transaction made 

after the opening event, while take 0 otherwise. Log distance is included in the model as the variable interest in cross-

sectional study. All the interactive terms included in every model represent the average treatment effects. In estimating the 

model 5, I also include the interaction term between the average treatment effect and every housing characteristics while 

only display the result from the interaction terms displaying a significant effect. Standard errors are in parentheses 

*** p<.001, ** p<.01, * p<.05 
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(see Table 1), the Metro Line 52 average treatment effects of 3.18% can be translated into a price 
premium of EUR 147.003 per square meter. 

I also perform a robustness check by expanding the study area boundary from 1,000-meter into a 
1,500-meter total-travel-cost network distance from the nearest Metro Line 52 station. This approach  
increases the number of observations, almost doubling from 23,668 to 41,795 house transactions (see 
column 4). By setting a broader study area, I find a less significant (p < 0.01) and a weaker treatment 
effect accumulating to 2.31% compared to a highly significant (p < 0.001) treatment effect of 3.18% 
found in column 3. However, this extended-study-area model still shows a significant and positive 
effect; thus, the specification used for the base model can be concluded as robust. 

Finally, I also aim to explore the result further and ask whether there is heterogeneity in the 
treatment effect. I again modify the baseline difference-in-differences model by interacting the 
coefficient previously representing the average treatment effect with all housing characteristics used in 
the main analysis. Column 5 documents that there is heterogeneity in the treatment effects across the 
distance to the nearest tram station and partly rented property dummy. This can also be an indication 
that there is heterogeneity in treatment effects across other housing characteristics. This heterogeneous 
treatment effect of the new metro line on housing price will be explored in the next few subsections and 
I will show that a machine learning approach can capture more personalized treatment effects with a 
valid confidence interval. 

 
C. Spatial Variations in the Average Treatment Effects 

 

To explore more on the spatial variation in the treatment effects, one of the approaches is to divide 
the treatment area into some sub-areas. This analysis divides the treatment area into 3 different zones: 
zone 1 constitutes the area within 0 to 200 m total-travel-cost network distance from the nearest Metro 
Line 52 station, and zone 2, as well as zone 3, constitute 200 to 537 m and 537 to 750 m, respectively. 
Table 4 shows the results of the base model regression taking into account the three different zones that 
are previously created.  

In column 1, we explore whether there is any difference in treatment effect for zone 1 and zone 2 
within the treatment area with only using 7,379 observations. The result indicates that zone 1 has a 
higher trend than zone 2 following the metro opening. This also indicates that there seems to be a spatial 
variation in the impact of metro opening in the treatment zone. However, I also find no significance in 
the treatment effect between both zones. This may also indicate that there is no significant difference 
between both zones in terms of the treatment effect of the metro opening. Therefore, I argue that 
multiplying samples by expanding the study area would be necessary to further check for these spatial 
variations. 

In column 2, I further expand the study area into the main study area in this study, i.e., within a 
1000-meter network distance buffer with 23,668 observations. In this analysis, I also recheck the 
variations between both zones. The result shows that the impacts are 6.7% and 2.88% higher for houses 
located within zone 1 and zone 2, respectively, compared to the rest of the zones, and those are all 
statistically significant. This validates the spatial variations for zone 1 and zone 2 in the previous result,  
where zone 1 has a higher impact compared to zone 2 when the sample in the controlled area is added 
into the study. This also implies that the effect is stronger for the houses located in the zone closer to 
the station. 

In column 3, I further add more spatial variation into the model by adding the zone 3 dummy 
indicating houses that are located within 537 – 750 m. The result is similar to the previous finding. It 
suggests that the impacts are still statistically significant and are 6.64 % and 2.82% higher in both inner 
zones (zone 1 and 2) compared to the reference zone. In contrast, the difference becomes no longer 
statistically different from zero when a house is located in the outer zone of zone 3. This complements  



24 

the previous interpretation where the strongest effects occurred for the houses located in the zone closest 
to the station while it gets smaller and smaller when a house located in the zone farther away from the 
metro station, and the treatment effects finally start to dissipate at a certain distance that is outside from 
the affected area. This can also be an indication that the treatment area calculated by the local 
polynomial regression might really represent the true affected area. 

As a robustness test, I also expand the base model (see column 3 in Table 3) by adding an additional 
distance dummy representing zone 3. If the treatment area calculated by local polynomial regression 
can really represent the affected area, we can expect that the treatment effect on the house price for 
house transactions located in zone 3 will not be statistically different from zero. Column 4 confirms the  
statement where the result shows an insignificant 0.00% effect on house prices within zone 3. This 
confirms that the use of local polynomial regression is a robust approach for treatment assignment as 
the use of the treatment area assigned based on this approach can appropriately estimate the treatment 
effects in the study area within a 1000-meter network distance buffer from each Metro Line 52 station. 
This also affirms that the overall winners from the new metro line in Amsterdam are the houses that are 
located within 537-meter network distance from the Metro Line 52 stations.  

Table 4. 

Spatial variations in the treatment effects  
      (1)   (2)   (3)   (4) 

Study Boundary       537_m    1,000_m    1,000_m    1,000_m 
Post  .0291 -.023 -.0222 -.0219 
   (.0342) (.0216) (.022) (.022) 
Within 0 – 200 m .0515* .0343 .0444  
   (.0242) (.0284) (.0312)  
Within 200 – 537 m  -.0166 -.0065  
    (.0124) (.0178)  
Within 537 – 750 m   .0106 .0106 
     (.0137) (.0137) 
Within 0 – 537 m    -.0071 
      (.0178) 
Within 0 – 200 m × .0355 .067** .0664**  
  Post (.0224) (.0212) (.0217)  
Within 200 – 537 m ×  .0288*** .0282**  
  Post  (.0087) (.0099)  
Within 537 – 750 m ×   -.0015 -.0015 
  Post   (.0103) (.0103) 
Within 0 – 537 m ×    .0312** 
  Post    (.0096) 
Observations 7,379 23,668 23,668 23,668 
R-squared .7726 .7206 .7206 .7204 
Adj R2 .7691 .7192 .7192 .7191 
Transactional characteristics Yes Yes Yes Yes 
Structural characteristics Yes Yes Yes Yes 
Locational characteristics Yes Yes Yes Yes 
Quarterly fixed effect Yes Yes Yes Yes 
Postcode fixed effect Yes Yes Yes Yes 
Notes: The table displays the results of panel regressions with log housing price per square meter as the dependent variable 

and housing structural characteristics (e.g. log size, dummies representing property types, parking dummy, number of 

bathrooms, number of kitchens, number of balconies, number of roof terraces, office room dummy, maintenance score of 

the inside, maintenance score of the outside, good maintenance dummy,  number of insulation types, central heating dummy, 

listed property dummy, and monumental property dummy), housing transactional characteristics (auction dummy, 

leasehold dummy, partly rented property dummy, and dummies representing years of construction) and housing locational 

characteristics (log network distance to the nearest tram station, and log network distance to the nearest metro station 

other than Metro Line 52 station) as the control variables. The quarterly time and postcode (6-digits) fixed effects are used 

in the estimations. The treatment estimations are defined by the total-travel-cost network distance of 537 meters from Metro 

Line 52 stations. The treatment variables are based on whether an observation is located within 0-200 m, 200-537 m, 537-

750 m, 750-1,000 m, 0-537 m, and 537-1,000 m of total-travel-cost distances from Metro Line 52 stations. Post dummy 

takes one if the house sales made after the opening and zero otherwise. The interactive variables estimate the treatment 

effect of Metro Line 52 on housing prices. Standard errors are in parentheses 

*** p<.001, ** p<.01, * p<.05 
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Table 5. 
Robustness tests: comparison between the base model and the model using different sources of distances 

      (1)   (2)   (3) 
    Euclidean distance ≤ 

537 m 
   Standard-network 

distance ≤ 537 m 
   Total-travel-cost network 

distance ≤ 537 m 
Post  .0063 -.0095 -.0226 
   (.0156) (.0192) (.0217) 
Within 537 m  -.0283   
  (Euclidean) (.0175)   
Within 537 m (Standard   -.0215  
  Network)  (.0135)  
Within 537 m   -.0171 
     (.0124) 
Within 537 m  .0168*   
  (Euclidean) × Post (.0068)   
Within 537 m (Standard   .0267***  
  Network) × Post  (.0078)  
Within 537 m × Post    .0318*** 
     (.0084) 
Observations 35,672 26,488 23,668 
R-squared .7243 .7271 .7204 
Adj R2 .7234 .7259 .7191 
Transactional 
characteristics 

Yes Yes Yes 

Structural characteristics Yes Yes Yes 
Locational characteristics Yes Yes Yes 
Quarterly fixed effect Yes Yes Yes 
Postcode fixed effect Yes Yes Yes 
Notes: The table displays the results of panel regressions with log housing price per square meter as the dependent variable 

and housing structural characteristics (e.g. log size, dummies representing property types, parking dummy, number of 

bathrooms, number of kitchens, number of balconies, number of roof terraces, office room dummy, maintenance score of 

the inside, maintenance score of the outside, good maintenance dummy, number of insulation types, central heating dummy, 

listed property dummy, and monumental property dummy), housing transactional characteristics (auction dummy, 

leasehold dummy, partly rented property dummy, and dummies representing years of construction) and housing locational 

characteristics (log network distance to the nearest tram station, and log network distance to the nearest metro station 

other than Metro Line 52 station) as the control variables. The quarterly time and postcode (6-digits) fixed effects are used 

in the estimations. The treatment estimations are defined by three different distance measurements, i.e., Euclidean, standard 

network analysis, and total-travel-cost network analysis. Standard errors are in parentheses 

*** p<.001, ** p<.01, * p<.05  

 
 

D. Alternative Proximities for Measuring Distances 

 

In this section, I will compare and discuss a few alternatives of distance measures as a proxy of 
accessibility that can be used in this literature. Table 5 shows the comparison between the results that 
uses a different measures of distance measurement techniques. Column 3 describes the main result of 
this paper which uses distance data from total-travel-cost network analysis technique. Columns 1 and 2  
show the results using the same model but using distance data from Euclidean analysis and standard 
network analysis, respectively. The study area is within a 537-meter distance from the nearest Metro 
Line 52 station and the distance measurements differ depending on each measurement technique; Thus, 
all of the results are based on the number of different observations.  

In the empirical analysis, it is essential to kick start the analysis by using the simplest technique to 
give some preliminary intuition about what the data is telling us about. I start the analysis by using the 
distance based on the simplest measurement method used in most studies of the impact of transportation 
infrastructure development projects on house price, i.e., the Euclidean distance. Since Euclidean 
distance use a linear distance from the station, the study area will always be larger than other distance 
measures. This study area contains 35,672 observations. The Euclidean estimation in column 1 suggest  

Table 6.  
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Conditional Average Treatment Effects  
      (1)   (2) (3)   (3) (5) 
    CATE Standard Error T value    Freq. Percent 

Treatment x Leaf 1  .3006   0.0512    5.872 1,290 10.90 
Treatment x Leaf 2   .3009 0.0517    5.820 1,339 11.31 
Treatment x Leaf 3 .3561    0.0469    7.586 765 6.46 
Treatment x Leaf 4 .3965    0.0623    6.360 877 7.41 
Treatment x Leaf 5 .4452    0.0385 11.566   1,520 12..84 
Treatment x Leaf 6 .4538    0.0602    7.534 1,134 9.58 
Treatment x Leaf 7 .4847    0.0612    7.916 1,030 8.7 
Treatment x Leaf 8 .5348    0.0496   10.773   1,311 11.08 
Treatment x Leaf 9 .5855    0.0463   12.642   1,161 9.81 
Treatment x Leaf 10 .6478    0.0436   14.849 1,408 11.90 
Leaf 1-10 YES     
Observations    11,835  
Notes: The table displays the results of CATE estimation with log housing price per square meter as the dependent variable, 

the first until the tenth leaves as the dependent variable, and the interaction terms between the treatment variable and the 

leaves as the average treatment effect in each leaf. The CausalTree algorithm does not compute standard errors by default. 

Thus, the standard error in this table is computed by running the standard linear regression of the leaves and the interaction 

terms on log housing price per square meter. 

   
that there is a positive trend in the interactive term representing the treatment effect of the metro opening 
within the treated area, but the effect is not significant. Note again that Euclidean measurement is prone  
to encounter a measurement error problem. It seems that some parts of the treatment effect are still 
unobserved in this Euclidean result. 

In column 2, I further explore the analysis by using conventional network analysis to deal with the 
endogeneity problem commonly found in this literature. This approach shrinks the total sample of the 
study into 26,488 observations. The result shows that the treatment effect starts to be significant and 
increases by 0.99% to 2.67% compared to the earlier Euclidean study. It can be implied that this 
standard approach succeeds to absorb some parts of unobserved treatment effects that are used to be in 
the error term of the Euclidean estimator. 

In practice, standard network analyses are still prone to measurement error as some unobserved 
networks, which are usually found in the studies, may still not be taken into account. I argue that the 
use of total-travel-cost network analysis can handle this issue. Although there is a very small shrinkage 
in terms of the total sample, the result of the estimation using total-travel-cost network analysis (see 
shows that the treatment effect increases from 2.67% to 3.18% compared to the estimation using the 
standard approach. It implies that this approach can correct the measurement error that occurred in the 
standard estimation. This increase of the treatment effect indicates that total-travel-cost network 
analysis approach can absorb the omitted coefficients that is used to be captured in the error term of the 
estimation using the standard network analysis approach. 

 
E. Heterogeneous Treatment Effect of Metro Line 52 on Housing Prices using Causal Tree 

 

In this section, I extend the main analysis of the linear panel estimation by introducing the causal 
tree approach into the framework to disaggregate the overall average treatment effects and estimating 
the treatment effect heterogeneity. This causal tree approach yields ten estimates of conditional average 
treatment effects (CATE) that differs between the leaves. Table 6 reports the result of the CATEs 
estimation13. I also explore how much the average level of each housing characteristics changes across 
leaves (see Appendix E). 

 
13 The CausalTree package does not include the standard error computation by default. To compute it, I estimate 𝐿𝑜𝑔(𝑠𝑎𝑙𝑒𝑠 𝑝𝑟𝑖𝑐𝑒/𝑠𝑞𝑚) = ∑ 𝛼ℓ𝐿ℓ + 𝑊 .  𝛽ℓ𝐿ℓℓ , where 𝐿ℓ  is defined to indicate the assignment to leaf ℓ, and W is the term for the binary treatment 
variable. The interaction coefficients in this specification represents the average treatment effects in each leaf, as 𝐸[𝑌|𝑊 = 1, 𝐿 = 1] −𝐸[𝑌|𝑊 = 0, 𝐿 = 1] = (𝛼1 + 𝛽1) − (𝛼1) = 𝛽1 . The standard error around the coefficients of the interaction terms is equal to the 
standard error around the CATEs. 
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The result shows that all CATEs display positive effects, and they are all statistically significant. 

Since all subpopulations that are located within the treated areas experience an uplift in housing price 
after the new metro line event relative to its subpopulation located beyond the treated areas, it seems 
that the binary treatment variable defined in this analysis works as intended. This may also make the 
robustness of the treatment assignment technique suggested in the previous section even stronger. 
Furthermore, by contrasting this result with the result from Chin et al. (2020) which finds 146 different 
estimates with 89 of which are positive and 53 of which are negative, and with the result from the 
implementation of their framework to the data used in this paper (see Figure 9) which also finds positive 
and negative estimates, it seems that the assignment of the interaction term between treated areas and 
post dummies works better in disaggregating the positive average treatment effect.  

Furthermore, Figure 8 illustrates the regression tree diagram generated from the honest causal tree 
approach. In the figure, we can identify which subpopulation of houses has the highest and the lowest 
treatment effects. The properties benefiting the highest capitalization effects go to the properties with 
the sizes of lower than 67 m2, i.e., equivalent to the log size of ln(4.2), and located more than 2.2 km, 
which is equivalent to the log distance to the city centre of ln(7.7), far away from the city centre of 
Amsterdam. This means that smaller size properties located far away from the city centre gain a higher 
capitalization than the other subpopulations. One explanation for this might be that smaller properties 
in such locations are more demanded as people are interested in a more affordable housing service as 
smaller properties tend to have a lower total nominal sale price while still benefiting from greater 
accessibility to the city centre the new metro line. In contrast, the properties with the size larger than 81 
m2, i.e., equivalent to log size of ln(4.4);  located less than 493 m2, i.e., equivalent to log network 
distance to tram station of ln(6.2), network distance from the nearest tram station; a maintenance score 
of the inside of lower than 0.94; as well as located less than 1.6 km, i.e., equivalent 

FIGURE 8. THE HONEST CAUSAL TREE RESULT USING THE INTERACTION BETWEEN TREATED AREAS AND 

POST DUMMIES AS THE BINARY TREATMENT VARIABLE 

 

Note: the splitting process will stop until the leaf has at least 30 observations of either treated or untreated 

groups 
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to the log distance to the city centre of ln(7.2) far away from the city centre witness the lowest average 
treatment effect. It may indicate that a larger size of a house and a closer distance of a house to the city 
centre leads to a smaller treatment effect. 

Lastly, I further add the regression tree result from using the treated area as the sole binary treatment 
variable (see Figure 9). It shows that the method leads to an incorrect CATE estimation. The method 
tells the algorithm to split the dataset based on the post dummy and assign it to the left leaf if the 
observation’s post dummy is equal to 1 and the right leaf if the observation’s post dummy is equal to 0. 
As a result, the left leaf only contains house transactions made after the new metro establishment, and 
the right leaf only contains hose transactions made before the event. In both leaves, the algorithm will 
only compute the price difference between the observations located within the treated areas and 
untreated areas without considering the house price difference between before and after the event. 
Consequently, this approach cancels out the DID framework in computing CATE within each leaf in 
the causal tree setting. 

 
V. Conclusion 

 
This paper argues that Amsterdam’s Metro Line 52 establishment, a large rapid transit system 

infrastructure development project in Amsterdam from 1968 to 2018, constitutes a good case study to 
empirically study the effect of an RTS opening on the housing market. This event constitutes one of a 
few big transportation infrastructure projects invested in the urban area with a very dense transport 
network. Even though this quasi-experiment design might not be entirely random, I argue that this event 
can still be qualified as a rather exogenous event compared to other transportation development projects 
because this project has goals which are to reduce the car usage and travel time cost, improve reliability 

FIGURE 9. THE HONEST CAUSAL TREE ALGORTIHM USING ONLY THE TREATED AREAS DUMMY AS THE 

BINARY TREATMENT VARIABLE 

 

Note: the splitting process will stop until the leaf has at least 30 observations of either treated or untreated 

groups and the red box indicates that the data is split based on the post dummy variable 
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and accessibility, and create a more liveable urban area while not merely about improving the economic 
growth. 

The estimates of the treatment effects over the time window from the pre-trend analysis presented 
in this paper suggest no significant anticipation effects prior to the opening of Metro Line 52. I argue 
that there might be a positive anticipation effect, but it is reduced by the negative sentiment perceived 
by society. Moreover, the result also does not show any significant negative effect that is probably 
driven by the noise because most of the construction work of this project occurred underground. 
However, I also found a significant anticipation effect that occurred as early as 1-year before the 
opening event, while the effect seems to disappear six months before the event.  

To estimate the average treatment effects, this paper specifies the hedonic linear model with the 
difference in difference design and controlling for six-digits postcode and quarterly time fixed effects. 
The results show that the price of the houses located within 537-meter network distance to the nearest 
Metro Line 52 station increase by 3.18% relative to the houses located beyond the treated areas. The 
results are still robust even though the study boundary is extended from 1000 m to 1500 m. This result 
indicates that this paper's local polynomial regression approach can be an appropriate way to assign a 
house transaction observation into an accurate treated or controlled group. The result also shows that 
there are several significant treatment effects heterogeneity. This indicates that the willingness to pay 
of households vary depending on the heterogeneity in household characteristics.  

I further check the spatial variations in the treatment effects by comparing treatment effect occurred 
in several different zones. The results confirm that the treatment effects are more substantial on the 
houses located in the first and second zones which are also located within the treated areas relative to 
the untreated areas. Furthermore, the result still shows a consistent significant positive effect for the 
first two zones after the third zone, which is located beyond the treated areas, included in the model, 
and it shows that there are no significant effects for houses in the third zone relative to the rest of the 
observations. 

This paper also compares the treatment effects using another source of distance proxies of 
accessibility. I first argue that using Euclidean analysis would lead to measurement errors as it does not 
consider any spatial and topography obstacles while assuming that the distance can be drawn as a 
straight line between the origin and the destination. I also argue that using standard network analysis 
will also face the same measurement error problem as in most of the real practice cases; there is still 
unobserved distances that should be taken into account. The result confirms that the estimates applying 
the total-travel-cost network analysis approach are proven to correct the measurement error that can be 
found in the models applying standard network analysis or Euclidean approaches. 

Apart from the main analysis, this paper also adopts the tree-based machine learning approach to 
estimate more personalized treatment effects by disaggregating the overall average treatment effect that 
is the typical object of interest in the previous analysis. The result shows that the highest treatment 
effect is received by the houses located within the treated areas, with a size of lower than 67 m2, and 
located 2.2 km away from the city centre. The framework of this approach modifies the method used in 
the earlier work by Chin et al. (2020), where this paper proposes to set the interaction term between the 
treated areas and post dummies as the binary treatment variable to estimate the CATE with a difference 
in difference correctly.  

The results in this paper are important because they can provide a deep understanding of how 
accessibility from the improvement of transportation infrastructure is absorbed into the house price via 
the capitalization effect. This may be useful for regional or urban policy design to understand the 
mechanism of the effect works. Estimating a more personalized treatment effect may also be useful 
because knowing for whom the treatment works best can provide a better insight into knowing the true 
treatment mechanism. In addition, the use of machine learning in urban research provides a solution to 
compute a large number of dimensions of heterogeneity at a low cost. 
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All in all, I have investigated the overall winners from the large investment of a new metro line 
project in Amsterdam from 1968 to 2018 by exploring the effect of the opening of Metro Line 52 on 
the housing price in Amsterdam in this paper. I further extend the analysis to find the biggest winners 
among the overall winners by estimating the heterogeneous treatment effect of the Metro Line 52 
opening on the housing market. This paper is one of a few papers in real estate economic literature that 
adopts machine learning techniques focusing on causal inference. In addition to the machine learning 
innovation, this paper also proposes several innovative approaches, such as the total-travel-cost network 
analysis to generate distances and local polynomial regression for treatment assignment, to contribute 
to the literature on the effects of urban transit infrastructure development. 
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Appendix 

 
APPENDIX A. DESCRIPTIVE STATISTICS OF CONTROL VARIABLES AND THEIR EFFECTS ON LOG HOUSE PRICE 

USING HEDONIC APPROACH 

Variable Effect on log house prices 
 Auctioned sale -.1767*** 
   (.0527) 
 Leasehold (erfpacht) -.0206*** 
   (.006) 
 Property is partly rented -.1566*** 
   (.04) 
 Period of construction  
  Before 1906 (Reference) 
  Between 1906 and 1930 -.0068 
 (.0043) 
  Between 1931 and 1944 -.0251*** 
 (.007) 
  Between 1945 and 1959 -.0233 
 (.0153) 
  Between 1960 and 1970 -.0444 
 (.0262) 
  Between 1971 and 1980 -.0529*** 
 (.0141) 
  Between 1981 and 1990 -.0438** 
 (.0163) 
  Between 1991 and 2000 -.0046 
 (.0112) 
  2000 and later .0371** 
 (.012) 
 Log (Size) -.2087*** 
   (.0061) 
 Semidetached property (Reference) 
 Apartment -.1364*** 
   (.0162) 
 Terraced property -.045** 
   (.0145) 
 Detached property -.0502 
   (.0541) 
 Private parking space .0935*** 
   (.0103) 
 Number of bathrooms .016*** 
   (.0032) 
 Number of kitchens -.0073* 
   (.0035) 
 Number of balconies -.0014 
   (.0029) 
 Number of roof terraces .0424*** 
   (.0037) 
 Room for (internal) office -.0874* 
   (.0393) 
 Maintenance score of the outside .0864*** 
   (.0177) 
 Maintenance score of the inside .2126*** 
   (.0137) 
 Maintenance state is good .0441*** 
   (.0053) 
 Number of types of insulation .007*** 
   (.0011) 
 Central heating .0334*** 
   (.0055) 
 Listed building .0316*** 
   (.0056) 
 Monumental .0151** 
   (.0053) 
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Variable Effect on log house prices 
 Log (network distance to the nearest tram) .0227* 
   (.0088) 
 Log (network distance to other nearest metro station) -.0022 
   (.0317) 
 Log (distance to the CBD) .2383*** 
   (.0713) 
 Log (distance to the city centre) -.0035 
   (.0691) 
 Observations 23668 
 R-squared .7204 
 Adj R2 .7191 
Standard errors are in parentheses 

*** p<.001, ** p<.01, * p<.05  
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APPENDIX B. DATA SELECTION STRATEGY 
 

No Selection criteria Number of observations 
1 Initial dataset (housing transactions in Amsterdam from 2002 to 2020) 154,910 
2 Remove cases with the network distance to the nearest Metro Line 52 stations 

higher than 1,000 m 
23,954 

3 Remove postal codes (4-digits) with less than 15 observations  23,941 
4 Remove cases with unknown year of construction 23.668 
5 Remove cases with zero size, unknown price, and unknown data in the other 

controlled variables   
23.668 
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APPENDIX C. HOUSING CHARACTERISTICS IN EACH LEAF  

      (1)   (2)   (3)   (4)   (5)   (6)   (7)   (8)   (9)   (10) 
    Leaf 1 Leaf 2 Leaf 3 Leaf 4 Leaf 5 Leaf 6 Leaf 7 Leaf 8    Leaf 9  Leaf 10 

CATE  .3006 .3009 .3561 .3965 .4452 .4538 .4847 .5348 .5855 .6478 
Structural Characteristics          
Log (size) 4.7460 4.8458 4.7723 4.7902 4.2759 3.9315 4.7296 4.7673 3.8845 3.9741 
 (.0073) (.0071) (.0095) (.0088) (.0067) (.0078) (.0082) (.0072) (.0077) .0070) 
Property type           
  Apartment .6946 .7229 .9307 .9282 .9776 .9815 .9495 .9252 .9931 .9226 
 (.0079) (.0078) (.0103) (.0096) (.0073) (.0084) (.0088) (.0078) (.0083) (.0076) 
  Terraced .2333 .2577 .0601 .0399 .0164 .0097 .0466 .0633 .0043 .0526 
 (.0072) (.0071) (.0094) (.0088) (.0067) (.0077) (.0081) (.0072) (.0076) (.0069) 
  Semidetached .0628 .0157 .0092 .025 .0039 .0009 .0029 .0053 -9.6731e-18 .0234 
 (.0034) (.0033) (.0044) (.0041) (.0031) (.0036) (.0038) (.0034) (3.5613e-03) (.0032) 
  Detached .0093 .0037 .0000 .0068 .0020 .0079 .0010 .0061 .0026 .0014 
 (.0018) (.0018) (.0023) (.0022) (.0016) (.0019) (.0020) (.0018) (.0019) (.0017) 
  Parking .2473 .0515 .0510 .1197 .0362 .0088 .0126 .1053 .0224 .0142 
 (.0067) (.0066) (.0087) (.0081) (.0061) (.0071) (.0075) (.0066) (.0070) (.0064) 
Number of  
  bathrooms 

.9364 1.1397 1.0327 1.0388 .8836 .8298 1.0311 1.0625 .8665 .8871 

 (.0153) (.0150) (.0198) (.0185) (.0141) (.0163) (.0171) (.0151) (.0161) (.0146) 
Number of  
  kitchens 

.7860 .8962 .8667 .8062 .8026 .7698 .8680 .7963 .7339 .7685 

 (.0137) (.0134) (.0178) (.0166) (.0126) (.0146) (.0153) (.0136) (.0144) (.0131) 
Number of  
  balconies 

.4178 .2323 .6562 .7252 .5013 .2751 .6058 .4729 .4005 .5724 

 (.0146) (.0143) (.0189) (.0177) (.0134) (.0156) (.0163) (.0145) (.0154) (.0140) 
Number of roof  
  terraces 

.1659 .3413 .2444 .1186 .1164 .1208 .2097 .2906 .0922 .0575 

 (.0107) (.0105) (.0139) (.0130) (.0099) (.0114) (.0120) (.0106) (.0113) (.0102) 
Private office  .0000 .0007 .0000 .0000 .0000 .0000 .0000 .0008 .0000 .0000 
 (.0004) (.0004) (.0005) (.0004) (.0003) (.0004) (.0004) (.0004) (.0004) (.0003) 
Maintenance  
  outside .8110 .7429 .7498 .7519 .7896 .7937 .7374 .9216 .7916 .7749 

 (.0029) (.0029) (.0038) (.0036) (.0027) (.0031) (.0033) (.0029) (.0031) (.0028) 
Maintenance  
  inside 

.7968 .7191 .7276 .7054 .7863 .7973 .7102 1.0000 .7996 .7666 

 (.0037) (.0036) (.0048) (.0045) (.0034) (.0039) (.0041) (.0037) (.0039) (.0035) 
Good  
  maintenance  .8946 .8536 .8575 .8039 .9013 .9030 .8165 1.0000 .8898 .8786 

 (.0088) (.0086) (.0114) (.0106) (.0081) (.0094) (.0098) (.0087) (.0092) (.0084) 
Number of  1.6171 .7864 1.1333 .9031 1.4447 1.2434 1.0223 1.9085 1.6813 1.3359 
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      (1)   (2)   (3)   (4)   (5)   (6)   (7)   (8)   (9)   (10) 
    Leaf 1 Leaf 2 Leaf 3 Leaf 4 Leaf 5 Leaf 6 Leaf 7 Leaf 8    Leaf 9  Leaf 10 

CATE  .3006 .3009 .3561 .3965 .4452 .4538 .4847 .5348 .5855 .6478 
  insulation types 
 (.0453) (.0444) (.0588) (.0549) (.0417) (.0483) (.0507) (.0449) (.0477) (.0433) 
Central heating  .7977 .8880 .8863 .9019 .9125 .8810 .8893 .9352 .8398 .8771 
 (.0090) (.0088) (.0116) (.0109) (.0083) (.0096) (.0100) (.0089) (.0094) (.0086) 
Listed property .1116 .3129 .0222 .0547 .0684 .1552 .0330 .1098 .0026 .0618 
 (.0080) (.0078) (.0104) (.0097) (.0073) (.0085) (.0089) (.0079) (.0084) (.0076) 
Monumental .1031 .2928 .0301 .0456 .0691 .1737 .0485 .1228 .0103 .0270 
 (.0079) (.0078) (.0103) (.0096) (.0073) (.0084) (.0089) (.0078) (.0083) .0076) 
Transactional Characteristics          
Period of  
construction           

  Before 1906 .2403 .7857 .4314 .0011 .2914 .5406 .3019 .4058 .4617 .1875 
 (.0122) (.0120) (.0159) (.0148) (.0113) (.0130) (.0137) (.0121) (.0129) .0117) 
  Between 1906  
    and 1930 .1101 .0642 .4431 .3877 .2928 .1182 .5204 .2990 .3445 .5355 

 (.0120) (.0117) (.0155) (.0145) (.0110) (.0128)  (.0134) (.0119) (.0126) .0114) 
  Between 1931  
    and 1944 .0667 .0119 .0170 .2862 .0743 .0397 .0990 .0625 .0301 .1222 

 (.0072) (.0071) (.0093) (.0087) (.0066) (.0077) (.0081) (.0071) (.0076) .0069) 
  Between 1945  
    and 1959 .0504 .0052 .0013 .1642 .0158 .0132 .0019 .0198 .0017 .0185 

 (.0043) (.0042) (.0056) (.0052) (.0040) (.0046) (.0048) (.0043) (.0045) .0041) 
  Between 1960  
    and 1970 .0775 .0090 .0013 .0741 .0664 .0265 .0000 .0084 .0078 .0348 

 (.0048) (.0047) (.0063) (.0059) (.0045) (.0052) (.0054) (.0048) (.0051) .0046) 
  Between 1971      
    and 1980 

.1016 .0157 .0013 .0000 .0487 .0362 .0029 .0031 .0138 .0192 

 (.0044) (.0043) (.0057) (.0054) (.0041) (.0047) (.0050) (.0044) (.0047) .0042) 
  Between 1981  
    and 1990 .0217 .0336 .0235 .0023 .0724 .0750 .0087 .0076 .0551 .0604 

 (.0053) (.0052) (.0069) (.0064) (.0049) (.0057) (.0059) (.0053) (.0056) .0051) 
  Between 1991  
    and 2000 .0899 .0642 .0431 .0011 .0651 .0917 .0563 .0625 .0172 .0064 

 (.0064) (.0060) (.0079) (.0074) (.0056) (.0065) (.0068) (.0060) (.0064) .0058) 
  2000 and later .2419 .0105 .0379 .0832 .0730 .0591 .0087 .1312 .0680 .0156 
 (.0071) (.0069) (.0092) (.0086) (.0065) (.0076) (.0079) (.0070) (.0075) .0068) 
Auction .0031 .0015 .0052 .0000 .0013 .0009 .0029 .0000 .0017 .0014 
 (.0011) (.0011) (.0015) (.0014) (.0011) (.0012) (.0013) (.0011) (.0012) .0011) 
Leasehold .5450 .0530 .3242 .9225 .4191 .0802 .5029 .2952 .2679 .5874 
 (.0119) (.0117) (.0155) (.0145) (.0110) (.0127) (.0133) (.0118) (.0126) .0114) 
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      (1)   (2)   (3)   (4)   (5)   (6)   (7)   (8)   (9)   (10) 
    Leaf 1 Leaf 2 Leaf 3 Leaf 4 Leaf 5 Leaf 6 Leaf 7 Leaf 8    Leaf 9  Leaf 10 

CATE  .3006 .3009 .3561 .3965 .4452 .4538 .4847 .5348 .5855 .6478 
Partly rented .0023 .0075 .0131 .0000 .0000 .0000 .0126 .0000 .0009 .0000 
 (.0015) (.0015) (.0020) (.0019) (.0014) (.0017) (.0017) (.0015) (.0016) .0015) 
Locational Characteristics          

Log (Distance to  
  other nearest 
  metro station) 

7.2148 6.8410 7.5006 6.6669 7.1035 6.7506 7.1220 7.0275 7.2614 7.4712 

 (.0138) (.0135) (.0179) (.0167) (.0127) (.0147) (.0154) (.0136) (.0145) .0132) 
Log (Distance to  
  the closest tram  
  station) 

7.1017 5.5284 5.3930 5.3889 5.8164 5.5774 5.1728 5.3841 5.5317 5.8642 

 (.0187) (.0184) (.0243) (.0227) (.0172) (.0200) (.0209) (.0186) (.0197) .0179) 
Log (Distance to  
  CBD) 8.1507 8.0745 7.4124 6.5994 7.7532 8.0765 7.4824 7.5628 7.7074 7.5657 

 (.0145) (.0142) (.0188) (.0176) (.0133) (.0154) (.0162) (.0144) (.0153) .0139) 
Log (Distance to 
  Centrum) 7.4850 6.7931 7.6838 8.1449 7.4322 6.7130 7.7172 7.4250 7.5350 7.8627 

 (.0150) (.0147) (.0195) (.0182) (.0138) (.0160) (.0168) (.0149) (.0158) .0144) 
 

 


