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Abstract 

 

This paper explores the impact of congestion on public transport 

ridership by analyzing passenger count data from six bus lines over the 

period from 2017 and 2023. The study finds that doubling the seating 

capacity on one line leads to a significant increase in ridership. The 

results show the increase in the number of passengers during morning 

peak hours being four times greater than during off-peak hours. These 

findings suggest that strategically increasing seating capacity during 

peak times is an effective method to enhance ridership.  
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1 Introduction 

1.1 Problem Statement and Relevance  

 

Though less widely studied than road congestion, crowding externalities within public transport 

systems also significantly affects ridership. The logic behind this is that negative experiences 

from crowding can deter passengers from traveling, thereby lowering overall ridership. This 

understanding forms the basis of our investigation.  

 

From an idealistic vision aimed at accelerating the modal shift towards public transport, the 

focus on crowding phenomena is grounded in compelling findings: Research such as a recent 

study by the Swiss territorial development office (ARE, 2022) suggests that enhancing 

agglomeration transit—rather than intercity transport—holds the greatest potential for 

increasing public transport’s modal split. At the same time, the existing literature about 

crowding externalities is applied to urban centers such as London (Wardman & Whelan, 2011), 

Sydney/Melbourne (Li & Hensher, 2013) and Île-de-France (Kroes et al., 2014), indicating that 

congestion tends mostly to apply in high density areas. With the view to substantially increasing 

ridership in public transport, a congestion investigation seems consequently particularly 

promising. 

 

1.2 Research Questions and Objectives 

 

The research strategy is divided into two stages. The first involves studying the raw effect of a 

service capacity increase on ridership. More precisely, the aim is to gauge the responsiveness 

of ridership to increases in service capacity. The term “service capacity” can refer to both 

vehicle capacity and frequency increases. Accordingly, the first research question is: 

 

“How do changes in public transport service capacity affect ridership?” 

 

In the second stage, we focus on quantifying how much of the observed increase (or decrease) 

in ridership after the service capacity enhancements is due to reduced discomfort from 

crowding. While the positive impacts on ridership are partly influenced by congestion 
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reductions, it is essential to consider that increases in service capacity might also improve other 

aspects of service quality, such as the perceived travel time, especially if it involves a frequency 

increase. Therefore, the second research question is: 

 

“To what extent can the increase in ridership be attributed to a decrease in crowding 

externalities?” 

 

Consequently, the objective of this study is to provide new empirical evidence on the impact of 

crowding on public transport ridership and to explore how enhancements in public transport 

services mitigate these effects. The findings aim to contribute both to theoretical knowledge 

and, albeit modestly, to the practical implementation in transportation supply planning for 

crowded routes. 

 

1.3 Hypotheses 

 

Based on the problem statement and the research questions, the following hypotheses are 

formulated: 

 

Hypothesis 1: An increase in public transport service capacity results in an increased ridership. 

 

Hypothesis 2: The impact of increased public transport serviced capacity on ridership is 

positively correlated with the level of crowding observed prior to the increase. 

 

These two hypotheses will be tested through a detailed analysis of public transport data, 

focusing on how changes in capacity influence passenger numbers and how these effects vary 

depending on the crowding pattern observed. 

 

1.4 Structure of the Thesis 

 

First, the essential literature about public transport determinants and crowding disutility 

implementation in utility models is reviewed. Secondly the methodology chapter builds the 

backbone of this study. It explains the research design, provides important definitions, details 
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the data collection, cleaning and aggregation process, calculates some summary statistics, 

explicates the triple difference estimation and finally sets up the model specification used in the 

analysis. Thereafter, the results are presented and interpreted. 
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2 Literature Review 

 

This chapter reviews the essential literature for the underlying analysis. First, Chapter 2.1. 

provides a general overview of the explanatory variables of ridership. Chapter 2.2 explores the 

direction of causality between the service capacity supplied by the operator and ridership and 

proposes solutions to mitigate the potential issue of endogeneity. Chapter 2.3 presents two 

models, considered convincing, on how a crowding can be implemented. Please note that the 

terms “ridership”, “patronage” and “charge” all refer to the number of passengers. There are 

used interchangeably throughout this study 

 

2.1 Determinants of PT Ridership 

 

There are internal and external factors of ridership in Public Transport (PT). The internal factors 

relate to decisions, policies and conditions determined by the transit operator or the authority 

providing subsidies. They must be differentiated from external factors that usually equate wider 

economic influences, such as unemployment rate, GDP or density around stations as 

summarized by Boisjoly et al. (2018). This differentiation is necessary as solely the internal 

factors are considered in the underlying study. The first common internal factor is the fare and 

consensus dominates about its statistically significant negative relationship with ridership 

(Chen et al., 2011; Taylor et al., 2009). The second common internal factor is the service quality. 

There is however a high variety about the specification of service. It can be considered as e.g. 

the number of vehicles operated (McLeod et al., 1991) as network density (Currie & Wallis, 

2008) or as service reliability (Paudel, 2021). Independently of the specification, consensus 

dominates about the positive impact of service quality on transit ridership (Kain & Liu, 1999; 

Taylor et al., 2009).  

 

Also, it must be noted that the coefficients and elasticities of internal factors show high 

variations depending on the duration period they are calculated for (Voith, 1991). In the context 

of rail demand, Voith, (1991) resumed that commuter ridership depends on the share of potential 

riders choosing the train among the pool of these potential riders, this pool being fixed in the 

short-term. These potential riders are to distinguish from non-PT users, for whom, despite 

favorable changes during the parameters of PT explanatory choice variables, are unlikely to be 
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swayed in the short-term. This resistance is evidenced by a slow evolution of the modal splits, 

even in the face of favorable policies. The introduction of free PT in Luxembourg in 2020 serves 

as an example. Indeed, despite a 10% modal shift of from car usage towards PT usage, car use 

and related congestion problems remain predominant (Bigi et al., 2023). Reasons for this 

rigidity are probably to be found partly justified by the nature of mobility decisions. Bubenhofer 

et al. (2018) evoked in the evaluation of a Micro census SP-study done by the Swiss government 

about mobility behavior, that mobility tools are a prerequisite for being mobile; their purchase 

being therefore often a long-term decision. To provide a thorough estimation, a study comparing 

the attributes of the other modes of transportation competing with PT would be required. 

 

To model the competition between different discrete alternatives such as PT and car, a common 

approach for travel demand research is the use of disaggregate/behavioral travel-demand 

modeling, also called discrete-choice models, as these models usually analyze choices among 

discrete rather than continuous alternatives (Small & Verhoef, 2007). The most widely used 

theoretical framework is the additive random-utility model by (McFadden, 1974). Discrete 

choice models necessitate data about each alternative.  However, the underlying analysis only 

considers PT data, therefore ruling out the utilization of these models.  Moreover, discrete 

choices are often analyzed statically, as McFadden’s model typically asserts fixed populations 

and therefore solely provides short-turn estimations (Voith, 1991). Although Xiong et al. (2015) 

proposed a new breakthrough with a hidden Markov modeling approach to consider the 

dynamic nature of travel mode choice, there is still a lack of theoretical frameworks for dynamic 

travel mode choice. As the underlying analysis focuses on the development over time of a 

supply shock on ridership, which is a second the use of discrete choice models seems 

inappropriate for a second reason. 

 

2.2 Service Capacity & Ridership: Where is the Causality? 

 

The direction of the causality between service capacity and ridership seems to be a typical case 

of simultaneous causality. As the literature regarding increases in vehicle capacity is scarce, the 

explanation of the so called “Mohring effect” in the context of frequency increases is used to 

highlight this duality. Thereafter, concrete solutions to avoid endogeneity and ensure the 

internal validity of the model are described in Section 2.2.3. 
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2.2.1 Ridership dependent on Service Capacity 

 

The total service capacity provided by the operator is dependent on two parameters: the 

frequency of service and the capacity of the vehicles employed. While several studies provide 

evidence about the effect of frequency on ridership (Kain & Liu, 1995; Voith, 1991), the 

literature rarely examines the pure and simple increases in vehicle capacity. Concerning 

frequency increases, Voith found for instance considerable impacts of service attributes of 

ridership. Analyzing the effect of adding one train per hour, he found out coefficients of 4.17 in 

the peak and 4.19 in the off-peak, therefore indicating a similar positive absolute effect on 

ridership across the day. Translated in elasticities, Voith calculated for the peak: 0.14 in the short 

run and 0.36 in the long run; for the off-peak: 0.74 in the short run and of 1.89 in the long run 

in the off-peak. The off-peak elasticities are higher than peak elasticities because the ridership 

per off-peak train is lower on average (av.) than that for peak hour trains. However, an elasticity 

of 1.89 is interesting as it suggests a more than proportional increase of ridership with respect 

to frequency (Voith). The author justifies this higher frequency-elasticity in the off-peak with 

the argument that off-peak trips wouldn’t be constrained to a regular schedule like work trips 

(Voith). However, this higher sensitivity of demand during off-peak periods may also be 

attributed to the fact that an increase in frequency has a more significant effect when the number 

of trips proposed is very low compared to when it is already high, as can be inferred from 

Mohring's model. 

 

More specifically, the so-called Mohring-effect defines that the passenger waiting time at stops 

equals half the frequency, therefore asserting that a doubling of frequency reduces by half the 

waiting costs at stops (Mohring, 1972). Small & Verhoef (2007) resumed the following 

simplified version of Mohring’s cost of waiting:  

 

C! = "!∗	%

&'
, 

 

 where  C!  is the cost of waiting, 

   α!  is the value of time per hour, 

   q  are the passenger per hour.  
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This equation shows how frequency can affect waiting costs and therefore ridership by reducing 

the waiting time of passengers. For example, doubling an hourly frequency to a semi-hourly 

frequency will reduce the av. waiting time from thirty minutes to fifteen minutes. Doubling a 

semi-hourly frequency to a quarter-hourly frequency will reduce the av. waiting time from 

fifteen minutes to seven and a half minutes. This theoretical framework is in line with more 

recent findings showing that routes with high headways are more sensitive to frequency 

increases (Evans IV, 2004; Verbas et al., 2015). However, the model also has limitations, as it 

omits the scheduling behavior of passengers who can minimize waiting time at stops.  

 

However, this critics of Mohring’s model can be attenuated by the schedule delay utility 

specification provided by Small, (1982). Assuming that passengers have a preferred arrival time 

at destination, Small defined a linear schedule delay early penalty for arriving too early than 

this preferred arrival time and a schedule delay late penalty for arriving too late. The delay late 

penalty is typically higher than the delay early penalty. Although this model was developed in 

the context of road congestion, it can be used to highlight how reducing headways can also 

contribute to lower schedule delays at arrival in PT. 

 

2.2.2 Service Capacity dependent of Ridership 

 

This direction of the causality suggests that the transit agency responds to increasing ridership 

or crowding variables with an increase in frequency. This suggests the presence of endogeneity, 

as this suggests that an explanatory variable is correlated with the error term (Stock & Watson, 

2002). Paradoxically, Mohring's model primarily serves as a framework to establish a frequency 

that minimizes the operator's costs (Mohring, 1972). Thus, we can infer that according to 

Mohring, frequency is also fundamentally a response to demand. In fact, Mohring’s model 

proposed to add the user waiting time defined above as cost input of the operator (Mohring). 

This modification induces the existence of increasing returns to scale and has a major influence 

on the optimal frequency of service. In fact, Mohring’s finding supports the idea of an optimal 

frequency that is higher than a PT supplier would offer under a basic marginal pricing scheme. 

Summarized, Mohring recognized the existence of a virtuous circle in PT due to the positive 

simultaneous causality between frequency and demand, therefore posing a major challenge for 

the analyzing the impact of frequency increases on ridership. 
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2.2.3 Solutions to Simultaneous Causality Bias 

 

There are two ways to mitigate simultaneous causality bias. The first relies on to use of 

instrumental variables catching the biasness and inconsistency polluting the regressor of interest 

(Stock & Watson, 2002). The second relies in designing and implementing a randomized 

controlled experiment in which the reverse causality channel is nullified (Stock & Watson). 

Unfortunately, it was neither possible to have an available variable able at catching the potential 

endogeneity of the treatment, nor was it possible to randomize the chosen links and this in a 

sufficient high sample size. It is therefore necessary finding another argument proving the 

introduction of an ameliorated supply to be exogenous to ridership. 

 

To solve this problem before starting the analysis, it is therefore useful to elucidate now the 

reasons which brought the operator to increase the capacity of service on the lines which it 

communicated to us. In our case, the essential breakthrough to this potential endogeneity 

dilemma was provided by activity report of the operator, which provides information on the 

reasons for the treatment. Although the specificities of the lines under analysis will be reported 

in greater detail later in the analysis, it is useful already noting that service capacity increase on 

one of lines (Line 60) was made possible by the introduction of thirteen new double-decker 

buses (TL, 2020). The introduction occurred in August 2019. We use this information to 

contradict the argument of endogeneity of the treatment in our case, based on the following 

arguments: 

 

First is assumed that the overall process between the decision and effective commissioning in 

2019, including tendering and production, most certainly exceeded the three years preceding 

introduction considered in this study. Therefore, it is assumable that the decision of introducing 

new buses on this line was not related to the ridership previously observed. However, this 

argument is not very convincing, as it can be argued that operators are used to forecasting long-

term tendencies, so they already had an estimate of the development of ridership in advance. 

However, L60 provides interesting insights from a second perspective: The purchased buses are 

specifically designed for use on the L60 and not on the other lines, most of which have overhead 

contact lines for electrical operation and are designed for single deck rolling stock. This helps 

in undermining the assertion that the operator could reallocate these buses to other routes, in 

response to varying ridership or crowding. On the contrary, the operator's flexibility is 
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significantly constrained, being largely limited to adjustments on L60. Although these 

arguments may not completely dispel the assertion that the operator has the flexibility to 

respond to demand through service adjustments, they provide nuance and prevent premature 

termination of the analysis. Furthermore, additional elements in the subsequent analysis will 

introduce new quantitative elements concerning this issue. 

 

2.3 Implementing a crowding variable 

 

Regarding the implementation of crowding as an explanatory variable for ridership, it is 

important to note the diversity in approaches.  This section revisits two models that have been 

highlighted for their compelling contributions in a prior research project. The first model has 

been developed by Kraus (1991) and introduces several different facets of crowding 

externalities. Then, another approach proposed by Tirachini et al., (2013) that proposes to 

introduce an interaction with the travel time variable is described. 

 

2.3.1 Crowding in different facets 

 

Kraus proposed an extension of Mohring’s framework to consider crowding disutility (1991). 

Kraus distinguished three types of crowding externalities: A unloading externality (1) referred 

as the delay cost of a marginal passenger’s unloading, an loading externality (2) referred as the 

delay cost of marginal passenger’s loading, and a discomfort externality (3) referred as the cost 

that passengers who board at stop � > �( impose on passengers who boars at stop �(. These three 

terms (1), (2) and (3) shall be considered as independent and are to be added up to assert the 

crowding effect. 

 

(1)  

�) =)ℎ�*
+

*,-

∗ �* ∗
�&
2  

 

 

 where  �)  is the marginal cost fare from a given stop �, 
   �  is the number of stops �, 
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   ℎ  is the headway (ℎ corresponds to 
-

.
	in Mohring (1972)), 

   �*  are the passengers per hour, 

   �*  is the value of time in transit, 

   �&  is the time for up/unloading. 

 

(2)  

)ℎ�*
+

*,-

∗ �* ∗ �& + 

 

(3)  

� ∗ �*( 

 

 

 where  �  is the added value to transit time while standing instead of 

     sitting, 

   �*(  is the transit time (with �( being the number of the highest 

     number stop where not all boarding passengers find seats 

     (�( is the largest value of � for which ℎ∑ �*+
),* > 	�, where 

     �	is the sitting capacity of a train)) 

 

This method of Kraus (1991) is convincing, as it specificizes the interaction of crowding with 

the delay that passengers impose on each other. Kraus is also very precise, as he divides the 

weight of the unloading time by two, as seen in (1), in comparison with the loading time. 

According to Kraus (1991), the disutility due to boarding at a stop continues until the last 

passenger has boarded the vehicle. However, this disutility is assumed to disappear once the 

passenger has alighted, which is expected to occur halfway through the unloading process. All 

in all, this model is therefore interesting for two reasons: First, because it demonstrates several 

facets of crowding disutility. Second, because it suggests congestion also correlates with other 

explanatory variables such as the value of travel time.  

 

 



 11 

2.3.2 The interaction with Travel Time 

  

The study of Tirachini et al. (2013) is central for the methodology and the research set-up of 

this work, as it is the only study specifically referring to the “load factor” widely used in the 

subsequent analysis. More specifically, Tirachini et al. proposed incorporating a correlation 

between crowding and the valuation of travel time. Their analysis had two dimensions: 

operational effects of crowding on travel time and other variables on the one side and the impact 

of excluding crowding disutility on demand on the other side. Included are standee density, seat 

occupancy proportion, and the “load factor” to represent disutility, with a minimum “load 

factor” threshold set at 60% (2): 

 

(1) �/ = �/ + �0�0/ + �1ℎ/ + �2�2/ + �3�3/ + �4�/  
   

(2) �/ = �/ + �0�0/ + �1ℎ/ + �2�2/ + �3�3/ + �4�/ + �567(/���(��/ −
0.6, 0)�2/  

 
(3)  

 where  �/   is the utility of mode �, 
   �0/	and �3/  are the access and egress times, 
   ℎ/   is the headway between two vehicles, 

     (ℎ/ corresponds to 
-

.
	in Mohring (1972)), 

   �2/   is the in-vehicle time, 
   �/   is the fare, 
   �6/   is the load factor, 

   �/   is the mode specific constant, 
   �8   are the parameters associated with the different  
     variables. 
 

With stated commuter preferences, Tirachini et al. (2013) identify a positive correlation 

between “load factor” and the value of travel time, with a threshold “load factor“ of 60%. From 

this analysis, they derive the concept of “crowding multiplier”, a factor that adjusts the value 

of in-vehicle time found under uncrowded conditions. Their findings indicate that the crowding 

multiplier increases as the “load factor” rises. 
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3 Data and Methodology 

 

This chapter is dedicated to the methodology, establishing the foundation for the empirical 

results presented in Chapter 4. Chapter 3.1 discusses the reasons why this study settles on a 

quasi-experimental design and uses Revealed Preferences (RP). Chapter 3.2 defines the key 

terms utilized throughout the study. Chapter 3.3 outlies the data collection process. Based on 

essential summary statistics about each bus line, Chapter 3.4 assigns each line to either the 

treatment group or the control group. Chapter 3.4 also elucidates the reasons why only the 

specific case of the line 60 during the morning peak in the return direction will be analyzed.  

Chapter 3.5. details the reasons for performing a data aggregation process and explains each 

the steps that resulted in the reduction of the dataset’ size from approx. 17 million observations 

to approx. 11 thousand. Chapter 3.6 specifies the differences-in-differences-in-differences 

method employed in the analysis. Finally, Chapter 3.7. justifies the exclusion of three potential 

control variables from the analysis. 

 

3.1 Overview of Research Design 

3.1.1 A Quasi-experimental Study 

 

This study is designed as a quasi-experiment. Randomness is introduced by variations in 

individual circumstances that make it appear “as if” the treatment is randomly assigned (Stock 

& Watson, 2002). Indeed, the variations in the individual circumstances of the transportation 

links gathered for the analysis arose due to their specific location and the timing of the 

treatments. A pure random selection of links for treatment and control was impossible due to a 

major constraint: The analysis required detailed data collection for each transportation link, 

necessitating substantial preparation work by the transit companies that accepted 

communicating data. Consequently, links were carefully targeted based on precise criteria 

outlined in Figure 1, and variation was introduced by incorporating multiple control links. 

These control links differed in terms of their radial or transversal configurations, geographical 

locations, capacities, and frequencies. 
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3.1.2 Type of Data 

 

The underlying analysis uses revealed preferences (RP) from secondary data. The reason for 

drawing on RP is twofold: First, the existing literature reported evidence regarding the effect of 

crowding in PT on ridership and mode choice decisions mostly using stated preferences (SP). 

In reality, only three major sources used RP: the first study found is of LT Marketing (1998), 

the second of Batarce et al. (2015) and the third of Tirachini et al. (2016). Opting for an RP 

approach enables therefore to address the relative scarcity of studies in this field. Secondly, SP 

studies are subjected to strong biases. For instance, Kroes et al. (2014) discovered that the 

revealed effective amount deciding to wait for a next, less crowded vehicle, to be lower than 

stated in survey’s responses. This suggests the presence of bias, possibly the hypothetical bias 

if the respondent was not able to fully understand the question due to the stress of congestion, 

or the strategical bias, if the respondent hopes to influence the operator, as already suggested 

from the oldest study in the field of PT crowding by (Fowkes & Wardman, 1987). Choosing for 

RP therefore permits avoiding some biases SP studies are subjected to. 

 

3.2 Definitions 

 

o Charge: Term used by the operator to describe patronage, ridership or number of 

passengers. All these descriptions are used interchangeably. 

o Evening peak: The evening peak starts at 16.00 and ends at 19.001. 

o Frequency: Number of vehicles serviced operated during a defined time range in a 

direction. I no time range is specified; it is one hour. 

o Morning peak: The morning peak starts at 07.00 and ends at 09.001. 

o Off-peak: The off-peak includes all periods not included in the morning and evening 

peak. 

o Passengers: Charge, patronage, ridership. All these descriptions are used 

interchangeably. 

 
1 No precise delimitation describing the start and end of morning and evening peak hours exists in the literature. It is context 

dependent. Accordingly, the delimitation applied by transportation planners from SBB is used. 
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o Patronage: Charge, ridership, number of passengers. All these descriptions are used 

interchangeably. 

o Load factor: Percental Ratio of the patronage observed divided by the number of seats 

supplied. 

o Ridership: charge, patronage, number of passengers. All these descriptions are used 

interchangeably. 

o Seating capacity: Number of seats per vehicle. 

o Timetable year: In Switzerland, PT operates based on timetable years. This usually lasts 

one year and begins on the second weekend in December of the previous year. 

o Workday: Every day, weekends and vacations excluded in the Canton of Vaud in 

Switzerland. 

 

3.3 Data Collection 

 

The data collection process constituted the most significant effort of this work. It is summarized 

in the sections below. 

 

3.3.1 Sources of Data 

 

The two data provider are the Swiss federal railways (SBB) and the PT operator of the Lausanne 

Region (TL), located in western Switzerland. Although the datasets from both operators differ 

in the amount and format of the specified variables, they are both constructed based on a mixture 

of scheduled data and real data collected from the vehicles, such as the counting systems at the 

gates. The data collection was carried out at the explicit request at the address of the two 

transport companies in question, SBB and TL. For SBB, acceptance of the terms of use was 

required. For TL, signing a confidentiality contract, providing all the codes and models were 

prerequisites for data delivery. 

 

3.3.2 Rail Data ruled out  

 

SBB provided data for the five suburban train lines S5, S7, S9, S14, and S15 of the Zurich S-

Bahn network for years since 2005. Regrettably, this data had to be excluded from the analysis. 
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Although the dataset was very rich, with each observation representing a train between two 

stops and including forty-nine columns of detailed information such as the train number, the 

seating capacity, the number of boardings and alightings, the patronage, etc., it lacked a variable 

describing the schedule of the rides prior to 2018. This limitation prevents us from addressing 

the second research question, as the observations cannot be grouped into peak and off-peak 

periods. Despite the possibility of constructing this information based on the train numbers 

included in the dataset and available in the historical timetables, this task was deemed too time-

consuming. As a result, the data generously provided by SBB are unfortunately not included. 

 

3.3.3 Data Details 

 

TL provided data for 7 of its 38 operated links. This covers six bus lines (L2, L6, L13, L54, 

L60, L64) and one metro line (M2). All lines are located in the agglomeration of Lausanne 

counting a population of 442’036 in 2022 (Ville de Lausanne, 2024). The period covers the 

years 2017, 2018, 2019 and 2023. To reduce a hypothetical unobserved heterogeneity and to 

specifically catch commuter passengers, weekends and vacations are excluded. Each dataset 

provides information for one bus link over the whole period. Each observation represents a bus 

between two stops and provides information about: year, date, vehicle number, direction, stop 

number, stop name, scheduled departure time, scheduled arrival time, patronage. The number 

of observations ranges from 890,560 observations for L13 to 4,290,730 observations for L2. As 

the vehicle capacity is not specified, the number of seats is gathered manually for the 351 

vehicle numbers based on manufacturer's brochures for the various models and stored in a 

separate file. 

 

3.3.4 Data sampling techniques on the Network level 

 

The first sampling stage took place before the data were even available. This was due to the 

considerable amount of work involved in extracting data for each line by the operator. It was 

consequently first necessary targeting the appropriate links to be analyzed. The choice was 

therefore based on 4 criteria, as depicted in Figure 1. No weighting is applied. Rather, each 

criterion shall be satisfied. The choice was made under the consultancy of the data provider.  
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Figure 1: Selection Criteria on the network level 

 

The first criterium stated that crowding must be present on the link under treatment. Therefore, 

a minimum threshold is set for the “load factor”: It should reach at least 60% during peak hours 

on average (av.). This relatively low threshold offers some flexibility while aligning with 

existing literature which indicates that the negative perception of the passenger due to crowding  

start to negatively impact ridership once a “load factor” of 60% is reached (Fletcher & El-

Geneidy, 2013; Tirachini et al., 2016). Since the data is not yet available, the fulfillment of this 

threshold is based on the operator's raw estimate. However, this criterion undermines the as-if 

randomization by suggesting a targeted selection of the analyzed links. Despite this, it is 

essential to ensure that a link subjected to crowding can be identified and retrieved. Second, the 

increase in supply shall substantial and sharp to provide sufficient variance pre-/posttreatment. 

Third, there must be no spillovers between the links under treatment and those under control as 

this a key identifying assumption of the Difference-in-Differences method, which will detailed 

in Chapter 3.6.3. Fourth, the treatment must have occurred outside the period affected by 

COVID-191, as this period substantially disrupted PT usage. Consequently, six bus lines and 

one metro line are retained for the analysis. 

 

3.3.5 Data cleaning techniques on the link-specific level2 

 

Once the data are available, several data cleaning operations at the link-specific level are 

conducted in preparation for analysis. Since the descriptive statistics specific to this analysis, 

such as the number of available seats or frequency, require retaining the raw number of 

 
1 COVID-19: CoronaVirus Disease provoked by SARS-CoV-2 arrived in Switzerland on 25 February 2020. It 

dramatically decreased PT usage. On 1 April 2022, all federal measures related to pandemics were dropped 

(Hintermann et al., 2023). 

2 For more detailed information, please refer to the Appendix X for the entire code, including comments. 
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observations, the data aggregation process that finalizes the preparation of the data for analysis 

is dealt separately in Chapter 3.5.  

 

Data cleaning is performed separately for each line. The code is generally similar for each line, 

although the documents to be imported differ. Figure 2 provides a visual summary of the 

cleaning process for a given line X. In the first step, the documents from different years are 

merged. In the second step, a separate document providing information on the seating capacity 

and total capacity (seating + standing) of the vehicles is joined, using the variable “no parc” as 

the key. From this point on, each observation is also assigned capacity variables. Subsequently, 

the variable “load factor” = charge/seating capacity is created. Additionally, the format of 

several variables is modified to enable further operations. Several operations are also performed 

on the time variables to facilitate analysis and determine the travel time for each run and at each 

stop.  

 

Despite this, the data provided by TL is characterized by a very high degree of quality. Missing 

observations had already been removed from the raw database. Additionally, for rides where 

the total number of boardings did not equal the total number alightings due to inaccuracies in 

the precision of the counting systems at the gates, the data was adapted. Specifically, the 

variable “charge” was slightly adjusted to a more accurate value that meets the condition of 

equal number of boardings and alightings per ride. Unfortunately, the calculation model for this 

preliminary cleaning is not known. 
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Figure 2: Heuristic scheme of data cleaning on the line-specific level.  
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3.4  Control and Treatment group  

 

After the dataset is cleaned, several summary statistics about the supply variables of the bus 

lines are performed. The results are summarized in Table 1, Table 2 and Table 3 and present the 

evolution between Timetable year 2017 and Timetable year 2023. Consequently, the bus lines 

can be categorized into the control or treatment group based on the evolution in the number of 

buses and of seats supplied per day. The bus lines that do not sufficiently meet the identifying 

assumptions of the econometric model that will be explained in Chapter 3.6. are already 

excluded here from the analysis. 

 

 

 

Figure 3: Classification of the bus lines to the Control or Treatment Group  

 

3.4.1 Control Group 

 

L2, L6 and L64 are retained for the control group due to their relative stability in the supply 

variables, as displayed in Table 1. Indeed, the number of buses and of seats per day are relatively 

stable, especially on L2 and L6. Regarding L64, it should be noted that both the number of 

buses and the number of seats slightly increased. However, this increase is not considered to be 

sufficient to be incorporated into the treatment group. Also, it can be observed that the number 

of stops on L6 increased from 24 to 26, which transgresses the stable composition condition of 

the econometric method that will be used for analysis (see Chapter 3.6.3). However, as this is 

not an extensive extension but rather a densification of the stop policy, the potential for 

endogeneity is considered as low. 
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Table 1: Overview of the Control Group  

 

 

3.4.2 Treatment Group Candidates 

 

L13 and L60 have been selected as potential “candidates” for the treatment group, reflecting 

their significant increases in seating capacity as documented in Table 2. These lines remain 

candidates pending further analysis of crowding patterns on each, which will be detailed in 

Section 3.4.4. 

 

Foremost, Table 2 provides major information regarding the type of treatment occurred on L13 

and L60. On L13, we can depict a decrease in frequency coupled with an increase in seating 

capacity during both the morning peak (MP) and the evening peak (MP). On L60, we can depict 

a stable frequency coupled with an increase in seating capacity in the MP; and an increase in 

frequency coupled with an increase in seating capacity in the EP. The dimensions are notable, 

as both lines experienced an approximate doubling in service capacity, if not more.  

 

However, the fact that we observe two treatments on L13 and L60 during the EP, both in term 

of frequency and vehicle capacity, might confound the estimations. Before taking a final 

decision on the potential erasure of the EP, it is however necessary also observing the crowding 

pattern applying before the treatment, as explained in Section 3.4.4. 
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Moreover, we can also infer that both L13 and L60 exhibit advantages and disadvantages: L13 

is characterized by a stable composition over the periods as the number of stops did not change. 

However, L13 also shows very low dimensions for “charge per day” compared to the control 

links and a small number of stops which subjects it to stronger bias. L60, on the other hand, 

shows dimensions for “charge per day” that are comparable with those displayed for the control 

lines. However, L60 has an unstable composition across the periods as the number of stops 

decreased from 33 to 17 and “Travel time” also slightly decreased by a few minutes.  

 

Table 2: Overview of Candidates for the Treatment Group 

 

 

3.4.3 Eliminated group 

 

L54 and M2 are excluded from the analysis. L54 has undergone considerable expansion as the 

number of stops increased from 10 to 20. To avoid clearly violating the identifying assumption 

of stable pre- and post-treatment composition (see Chapter 3.6.3), it is excluded from the 

analysis. Secondly, M2 is not retained for comparison, as it is considered a different mode of 

transport than buses. We may note that there is a debate about the existence of a rail bonus 

(Axhausen et al., 2001), which describes a preference for the rail option over the other 

alternatives. 
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Table 3: Overview of non-selected Lines 

 

 

3.4.4 Choice of peak period(s) and direction(s)  

 

After categorizing the bus lines into the control and treatment group (candidates), the next step 

involves selecting the specific peak periods for detailed analysis. There are two approaches to 

consider: the first is to focus exclusively on either the morning peak (MP) or the evening peak 

(EP) in each regression. The second approach involves incorporating interactions for both the 

MP and EP, which necessitates simultaneous analysis of both directions of travel. 

 

However, this dual approach introduces complexities due to the directional nature of the routes. 

For instance, L13 and L64 both operate from the outskirts to the city center, leading to 

differences in crowding levels between the inbound and outbound journeys. Figures 4 and 5 

illustrate this asymmetry, suggesting that crowding phenomena may not mirror each other in 

both directions. Based on this, the analysis will be confined to a single peak period and one 

direction to ensure clarity and precision in the regression results. 

 

In a second step, a choice between the MP and the EP must be made. One disadvantage of the 

MP is that passenger flows on a workday would potentially demonstrate more evident 

spatiotemporal heterogeneity, as observed by Lu et al. (2024), compared to the EP. Since this 
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study focuses on internal factors and ignores the external factors of ridership (see Chapter 2.1), 

focusing on the evening might help in reducing the potential bias of these unobserved factors.  

 

     

Figure 4: L13: Load factor per hour and direction before treatment (aggregated over entire 

link).  

   

Figure 5: L60: Load factor per hour and direction before treatment (aggregated over entire 

link)1. 

 

Figure 4 and Figure 5 provide boxplots representing the distribution of the “load factor” 

observed on L13 and L60 before treatment in both directions. Accordingly, the following points 

are noteworthy:  

 

 
1 The first, respectively the last stop of L60 is stated as City Centre as it changed from Lausanne-Flon to Riponne-

Maurice Béjart on the 12.12.2023. 
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• First, the “load factor” varies greatly according to direction and hour. This confirms the 

previously mentioned argument that a one-way analysis of both peaks would be 

irrelevant. 

 

• Second, the distribution of the “load factor” is slightly more compact during the MP 

than during the EP. This supports the definition provided in Chapter 3.2 that the MP 

would last for two hours, while the EP would last for three hours.  

 

• Concerning L13, no substantial crowding is observed. Hence, the selection criterion set 

in Figure 1 of a minimum 60% threshold to consider any crowding disutility is not filled.  

 

• Concerning L13 moreover, it is worth noting that the data shows equal averages as well 

as 25%th- and 75%th- percentile values over several hours across the workday. It is 

assumed that the vehicles used prior to the treatment did not have automatic counters at 

gates and that counting was carried out by hand at sporadic intervals, with values 

subsequently extrapolated for other periods. This calls into question the quality of the 

data and the accuracy of the subsequent analysis with L13. 

 

• Concerning L60, crowding varies strongly depending on the direction. In the downward 

direction from the upper outskirts to the city center, over 50% of the observations 

between 07:00 and 07:59 show a “load factor” exceeding 100%, whereas solely slightly 

more than a quarter of the observations reach this level between 17:00 and 17:59. In the 

upward direction from the city center to the upper outskirts, no substantial crowding 

pattern is observed in the morning hours. However, the av. “load factor” exceeds 100% 

between 16.00 and 18.59, and even 150% between 17.00 and 17.59.  

 

Consequently, it has become necessary to exclude L13 from the analysis. Several factors 

contribute to this decision: L13 exhibits low passenger counts, experiences two simultaneous 

interventions, shows minimal evidence of crowding, and the data quality is questionable. The 

analysis will instead focus on L60 during the morning peak (MP) in the direction from 

Froideville, Laiterie towards the City Centre, also referred to as the return direction (R). Despite 

lower crowding levels compared to the evening peak (EP) in the opposite direction, the singular 

nature of the treatment—namely the increase in capacity without concurrent frequency 
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changes—offers a clear advantage. This distinct setup eliminates some potential confounding 

effects, thereby strengthening the validity of analyzing this specific scenario. 

 

3.5 Data aggregation 

 

After cleaning and describing the datasets, several data aggregation operations are conducted 

to eliminate confounding effects and to condense the dataset size, facilitating more efficient 

regression analyses within a manageable timeframe. After each aggregation step, a descriptive 

table for “charge” was calculated in the code to ensure that the operations do not cause any 

major distortion of the data. Figure 6 provides a visual summary of the aggregation process. 

Before starting the aggregation process, the cleaned and described datasets of L2, L6, L60 and 

L64 are merged. As each line rides’ ID have conflicting numbers, the reallocation of a unique 

“id” for each ride is necessary. Firstly, the direction is chosen: “R” for the MP. By accident, it 

turns out that “R” describes the best the MP experienced for all lines. As a result, half of the 

observations are erased. Secondly, 17 stops occurring on L60 are erased. The detailed 

explanation of the reasons for this choice is provided in Section 4.1.2. Thirdly, each ride’s last 

observation is erased. This step is justified by the fact that these instances always have value 

"0" for “charge+ and “load factor.” Indeed, each observation corresponds to a stop. But the 

value for charge and “load factor” captures the value between the specified stop and the next 

stop. And as the last stop per ride has no subsequent stop, “charge” and “load factor” is always 

display “0”. This adjustment has the effect of increasing the av. charge and “load factor” per 

ride, especially for the lines with few stops. Fourthly, only five months are kept for analysis. 

This operation is performed to make the model more efficient errors. Fifthly, the dataset is 

collapsed. This is the major operation of the aggregation process: Data are aggregated by the 

ID of each ride. As a result, each observation therefore no longer corresponds to a stop, but to 

a ride. Therefore, the values displayed for “charge” and “load factor” represent from now on 

the av. over the trip. Sixthly, a proxy is set for the MP (07:00 – 07:59) and the OP (10:00 – 

10:59). Only the rides inside these time ranges are kept in1. Seventhly, random sampling is 

applied to test the robustness of our estimates as we increase the sample size. As a result, the 

 
1 The retained time per ride is the departure time at the first stop. E.g. a 30-minutes ride departing at 07.59 with arrival time is 

08.29 is kept in, whereas a 30-minutes ride departing at 06.59 with arrival time is 07.29 is erased. This measure is essential to 

avoid breaking down the structure of the rides and keep a longitudinal consistency. 
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number of observations is reduced from approx. 17 million observations to approx. 11 thousand 

observations. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Heuristic scheme of data aggregation 
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3.6 Model 

 

The analysis relies on differences-in-differences-in-differences estimations, also called triple 

difference estimations (DiDiD).  

 

3.6.1 Rationale for selecting this Method 

 

The choice of difference estimations for answering the research questions is founded on three 

key reasons: Firstly, the double difference method is prevalently applied in quasi-experimental 

research designs and is recognized as a fundamental analytical approach in Econometrics (Stock 

& Watson 2002). Secondly, difference estimations are particularly useful when randomization 

is infeasible, which is the case in this study (refer to Chapter 3.3 for details). Thirdly, this 

method is ideally suited to address both research questions within a unified analysis framework. 

The first objective is to determine how changes in PT service capacity affect ridership, 

achievable through a two-dimensional difference estimation (time, treatment). The second 

objective is to assess the extent to which the increase in ridership can be attributed to a decrease 

in crowding externalities. This is facilitated by a three-dimensional difference estimation (time, 

treatment, peak), allowing for additional differentiation based on whether the period 

experienced crowding prior to the capacity increase. 

 

3.6.2 The Double Difference Estimator 

 

Basically, a one-dimensional regression considering the effect of a treatment on a dependent 

variable, could be described by an ordinary least squares regression. In contrast, the classical 

differences-in-differences estimation does not compare the post-treatment evolution of the 

dependent variable in isolation. Instead, it adds a second temporal dimension comparing this 

evolution to that of another group of control. Consequently, the unidimensional effect is either 

attenuated or reinforced by incorporating this second dimension. Consequently, this dual-

dimensional approach allows for the calculation of the double difference estimator as follows: 

 

�"!"##$%"&%!"##$ = $�'()*+, .#/01*+ − �'()*+, .#/01*)' − $�'()*), .#/01*+ − �'()*), .#/01*)' 
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If the treatment is randomly assigned, �9*66:;*+;9*66: is an unbiased and consistent estimator 

of the causal effect (Stock & Watson, 2002).  

 

3.6.3 The Triple Difference Estimator 

 

The triple difference method extends the classical difference-in-differences approach by 

incorporating an additional third dimension. Introduced by Gruber in 1994, this methodology 

addresses potential biases that arise when significant disparities between the treatment and 

control groups persist, which classical difference-in-differences estimations may not fully 

account for (Olden & Møen, 2022). This third dimension justifies the enrichment of the model, 

allowing for a more nuanced accounting of these disparities. Specifically, the triple difference 

approach involves comparing the treatment group not only with the initial control group but 

also with an alternative control group. This second control group is selected to more closely 

match the characteristics of the treatment group, thereby providing a more precise measure of 

the treatment’s impact (Olden & Møen). In our study, this third dimension is represented by a 

dummy variable for the morning peak (MP), enhancing the robustness of our model. 

Consequently, the triple difference estimator can be calculated as follows: 

 

�"/1"230%"&%!"##$ 	= )$�'()*+,45*+,6#/01*+ − �'()*+,45*+,6#/01*)'

− $�'()*),45*+,6#/01*+ − �'()*),45*+,6#/01*)'*

− )$�'()*+,45*),6#/01*+ − �'()*+,45*),6#/01*)'

− $�'()*),45*),6#/01*+ − �'()*),45*),6#/01*)'* 
 

 

Summarized, the triple difference estimator calculates the difference between two difference-

in-differences estimators (Olden & Møen, 2022).  

 

3.6.4 Identifying assumptions 

 

For the triple difference to be an unbiased and consistent estimator of the causal effect, several 

identifying assumptions need to be satisfied. Firstly, the intervention must not be related to the 

outcome at the baseline, ensuring the exogeneity of the model. This criterion is discussed in 
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Chapter 2.2.3, where both the theoretical framework and the practical claim for the treatment's 

exogeneity on L60 are examined. Second, for difference estimations to be considered reliable, 

it’s important that the treatment and control groups follow similar trends before the treatment. 

This helps ensure that the results we see are actually caused by the treatment (Lechner, 2011). 

Before we do any regression analysis, we will check this by using a method from Riveros-

Gavilanes (2023). This method looks at how significant the trends were before the treatment 

was applied. The main purpose of checking these trends is to depict the potential presence of 

anticipation on the dependent variable before the treatment, causing the estimates to be biased 

(Callaway & Sant’Anna, 2021). Fortunately, when we use triple difference estimations, we 

don’t have to check this for every single group separately (Olden & Møen, 2022). This 

requirement is the same as what we use for double difference estimations. Third, the 

composition of the groups must remain consistent throughout the observation periods, as 

changes in composition can complicate the interpretation of the results (Callaway & Sant’Anna, 

2021). For this reason, L54 was excluded from the analysis. Unfortunately, this assumption is 

not met for L60, but strategies to mitigate this issue are discussed in Section 4.1.1 and Section 

4.1.2. Fourth, there should be no spillover effects between the groups (Butts, 2021). Although 

all lines are located within the same network, they are considered independent apart from Stop 

“Bessières”, where both L6 and L60 intersect. However, this assumption of no spillovers does 

not hold for the third dimension, as passengers who traveled during the off-peak period before 

the treatment may be the same ones traveling during the peak period afterward. This limitation 

will be discussed in detail in Chapter 5.3. 

  

3.7 Control variables 

 

Price, travel time, reliability: Although the definition of the travel time variable can vary from 

taking into account only the time spent in the vehicle (Parry & Small, 2007), to the addition of 

access and egress times (Tirachini et al., 2013), consensus dominates in the literature that these 

variables are major explanatory variables of PT-Utility. The reason for assessing the addition of 

control variables is twofold: First, control variables with substantial explanatory power reduces 

the residual variance and increases the precision of the causal effect of interest. Second, 

including more regressors might account for differences between groups and make the parallel 

trend identifying assumption needed for identification more credible (Olden & Møen, 2022). 
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3.7.1 Price 

 

No price variable can be retrieved or constructed from the available datasets. As Swiss PT 

systems do not use a card identification system for each passenger as for example practiced in 

the Netherlands, it is impossible to infer a relation between a boarding or alighting observed 

and the ticket/subscription purchased by the passenger concerned. Hence, it is also 

impracticable including this variable. However, it's worth noting that nominal PT prices have 

remained stable from Timetable year 2016 to Timetable year 2023 (Alliance SwissPass, 2023).  

 

3.7.2 Travel time 

 

Travel time is established for each ride and at each stop thanks to the data cleaning process 

performed in Section 3.3.5. Moreover, this variable demonstrates an interesting variation 

between the peak and off-peak periods, as displayed Table 1 and Table 2. This is the result of 

the increased passenger in- and outflow during the peak and, above all, of the scheduled 

increased travel time because of the congestion imposed by road traffic during the peak. 

However, this variable resulted to be highly multicollinear with several other variables, as will 

be shown in Chapter 4.4. It’s contribution in increasing the fit will be proven to be low, while 

considerably inflating the variance in the pallet of specifications tested. Unfortunately, the 

inclusion of travel time as control variable is therefore rejected. 

 

3.7.3 Service reliability 

 

Implementing a control variable considering reliability or service quality appeared primarily 

difficult as the datasets provided by TL do not communicate about the real effective departure 

and arrival time of the rides. Nevertheless, it provides the vehicle number, whereas this 

information was used to construct the “load factor” variable (see Section 3.3.5).  

 

The interesting element is that a non negligeable number of the observations for “vehicle 

number” have value 0. The data provider explained this identifier to be used for trips where the 

data was not correctly retrieved by the vehicle's on-board systems, or where the retrieved data 

was of poor quality. In such cases, the ride data would be imputed with high-quality data from 
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a similar period, including the same section, time of year, day of the week, and time of day. The 

operator therefore assumes the ride to have occurred. At the same time, it could be retrieved 

from code-related descriptives, that the pattern of frequency demonstrated an implausibly stable 

and equal number of trips observed across each workday, suggesting a perfect bus ride 

occurrence of 100%, as according to the schedule. This state of matter calls for a more detailed 

study. 

 

To test whether bus numbers equaling 0 might represent rides that did not occur as scheduled, 

a logical reasoning would suggest that a not-occurred ride would transfer the patronage, if not 

entirely then at least partially, to the next ride. Consequently, the following null hypothesis is 

tested: 

 

“A vehicle number equaling 0 leads to a statistically significant higher number of passengers 

on the next ride w. r. t. other rides. “ 

 

This involves creating a variable to capture the patronage for the subsequent trip, aiming to 

analyze data reliability and imputation practices. Accordingly, instances following suspected 

rides, and not equaling zero themselves, are flagged. This flagging allows for a comparison of 

the observed patronage with trips following those without data issues. Using these flagged 

variables, t-tests are performed to determine if there is a significant difference in patronage 

between the groups. 
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Table 4: T-Tests Comparing Trip Patronage Following Suppressed Rides1  

 

 
1st Two-sample t test with equal variances on L60, direction R 

----------------------------------------------------------------------------- 

  Group |     Obs        Mean    Std. err.   Std. dev.   [95% conf. interval] 

--------+-------------------------------------------------------------------- 

      0 |  28,927    16.27751    .0712584    12.11959    16.13784    16.41718 

      1 |   1,323    17.36153    .4247214    15.44842    16.52833    18.19473 

--------+-------------------------------------------------------------------- 

        |  30,250    16.32492     .070638    12.28574    16.18647    16.46338 

--------+-------------------------------------------------------------------- 

   diff |           -1.084015    .3453574                -1.76093   -.4071002 

----------------------------------------------------------------------------- 

   diff = mean(0) - mean(1)                                      t =  -3.1388 

: diff = 0                                     Degrees of freedom =    30248 

: diff < 0                 Ha: diff != 0                 Ha: diff > 0 

(T < t) = 0.0008         Pr(|T| > |t|) = 0.0017          Pr(T > t) = 0.9992 

 

 

 

2nd Two-sample t test with equal variances on all 5 lines, direction R 

----------------------------------------------------------------------------- 

  Group |     Obs        Mean    Std. err.   Std. dev.   [95% conf. interval] 

--------+-------------------------------------------------------------------- 

      0 | 239,362    12.36807    .0180257     8.81899    12.33274     12.4034 

      1 |   9,288    12.50046    .0983341    9.476873    12.30771    12.69322 

--------+-------------------------------------------------------------------- 

        | 248,650    12.37301    .0177369     8.84446    12.33825    12.40778 

--------+-------------------------------------------------------------------- 

   diff |           -.1323943    .0935354               -.3157212    .0509326 

----------------------------------------------------------------------------- 

   diff = mean(0) - mean(1)                                      t =  -1.4154 

: diff = 0                                     Degrees of freedom =   248648 

: diff < 0                 Ha: diff != 0                 Ha: diff > 0 

(T < t) = 0.0785         Pr(|T| > |t|) = 0.1569          Pr(T > t) = 0.9215 

 

 

Table 4 presents the results for L60 specifically in direction “R”, as well as for all five lines, 

also in direction “R”. Although the 1st t-test demonstrates a statistically significant difference 

between both groups at the 0.001 level, it is necessary to acknowledge that the effect is too 

modest to support the construction of a convincing proxy variable representing the service 

reliability. Furthermore, when all five lines are considered as in the 2nd t-test, the null 

hypothesis–that rides following those suspected to have been suppressed would exhibit higher 

patronage–is rejected at the 0.1 level. Consequently, the option of incorporating a proxy control 

variable for describing the service reliability is also discarded. 

  

 
1 Please excuse the poor visual quality of this table. All automatic means tried all failed in displaying the results 

with better visual quality. 
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4 Empirical results 

 

This chapter applies the methods and models outlined in Chapter 3. Section 4.1 details the 

treatment applied to Line 60, including the necessary adjustments, along with the correlation 

matrices and the testing of parallel trends prior to treatment. Section 4.2 presents the regression 

results and explains the implications of the coefficients. Section 4.3 offers a methodological 

interpretation of the findings. Section 4.4 evaluates the efficiency of the estimated coefficients. 

 

4.1 Treatment on L60  

 

The capacity expansion on Line 60 (L60) was achieved by introducing new double-decker 

buses. As a result, the number of seats available is roughly doubled (see Table 2). This upgrade, 

effective from August 2019, consists of the introduction of "Enviro 500" double-decker buses. 

Nonetheless, the deployment of single-decker buses like the "Lion's City GL" and the "Citaro 

C2 G" continued to some extent. Despite the augmentation in seating capacity, the frequency 

of service during both the morning peak (MP) and off-peak (OP) periods remained constant. 

 

4.1.1 Evolution of Ridership during the Morning Peak  

 

The observed value for the dependent variable “charge” in Figure 8, Figure 9 and Figure 10 

demonstrate a different pattern depending on stop and period analyzed. Indeed, the trend 

indicates an increase in charge for all observed periods at the stops “Froideville, Croisée” and 

“Coppoz, Poste” following the increase in capacity, whereas it tends to stagnate or decrease at 

stop “Bellevaux”.  

 

       

Figure 7:Charge per day during the MP, OP, EP and in total at Froideville, Croisée 
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Figure 8: Charge per day during the MP, OP, EP and in total at Coppoz, Poste 

       

Figure 9: Charge per day during the MP, OP, EP and in total at Bellevaux 

 

4.1.2 Necessary Adjustments  

 

The evolution depicted at stop “Bellevaux” in Figure 9 is explained by the changes in the stop 

policy on this line, as shown in Figure 10. Many stops between “Coppoz-Poste” and “Lausanne-

Flon”/”Riponne-M.Béjard” have been removed. This change has had the positive effect of 

reducing travel time by four minutes, but it has also diminished service coverage. It is assumed 

that passengers from the outskirts located at the northern stops of the line, such as “Froideville, 

Croisée” were minimally impacted by this modification. It is assumed these passengers mostly 

travel directly to the city center and not to the erased stops. Unfortunately, this hypothesis 

cannot be tested as the origin-destination matrix of passengers is unknown. However, the effect 

seems being particularly strong on the southern part of the line, such as at “Bellevaux”. 

Consequently, it was necessary to make a constraining choice to limit these effects, which might 

complicate the further steps of the analysis. Therefore, all stops between “Coppoz-Poste” and 

“Bellevaux” are excluded from the analysis due to the significant changes they underwent, 

which clearly violate the stable composition assumption of the difference estimation (see 

Chapter 3.6.3). While the assumption is also transgressed in the retained area, it is assumed to 

a lesser extent. 

 

    Stop/Period     |12.12.16-07.12.18|10.12.18-05.07.19|26.08.19-13.12.19|12.12.22-13.12.23 

 -------------------|-----------------|-----------------|-----------------|----------------- 

 1. Froideville-Lait|        ●        |        ●        |        ●        |        ●          

 2. Froid. Croisee  |        ●        |        ●        |        ●        |        ●         

 3. Froid. Village  |        ●        |        ●        |        ●        |        ●         

 4. Rusteriaz       |        ●        |        ●        |        ●        |        ●         

 5. Bottens, Croisee|        ●        |        ●        |        ●        |        ●         

 6. Chalet-Coucou   |        ●        |                 |                 |                  
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 7. Bretigny/Morrens|        ●        |        ●        |        ●        |        ●         

 8. Cugy VD, Moulin |        ●        |        ●        |        ●        |        ●         

 9. Cugy VD, Village|        ●        |        ●        |        ●        |        ●         

10. Cugy VD, Poste  |        ●        |        ●        |        ●        |        ●         

11. Cugy, Cavenette |        ●        |        ●        |        ●        |        ●         

12. Le Mont, Budron |        ●        |        ●        |        ●        |        ●         

13. Le Mont Fougeres|        ●        |        ●        |        ●        |        ●         

14. Le Mont, Etavez |        ●        |        ●        |        ●        |        ●         

15. Grand-Mont      |        ●        |        ●        |        ●        |        ●         

16. Coppoz          |        ●        |        ●        |                 |                  

17. Coppoz-Poste    |        ●        |        ●        |        ●        |        ●         

18. Petit-Mont      |        ●        |        ●        |                 |                  

19. Cotes           |        ●        |        ●        |                 |                  

20. Martines        |        ●        |        ●        |                 |                  

21. Rionzi          |        ●        |        ●        |                 |                  

22. Grangette       |        ●        |        ●        |                 |                  

23. Bellevaux       |        ●        |        ●        |        ●        |        ●         

24. Foret           |        ●        |        ●        |                 |                  

25. Motte           |        ●        |        ●        |                 |                  

26. Vieux-Moulin    |        ●        |        ●        |                 |                  

27. Grande-Borde    |        ●        |        ●        |                 |                  

28. Memise          |        ●        |        ●        |                 |                  

29. Tunnel          |        ●        |        ●        |        ●        |        ●         

30. Place du Nord   |        ●        |        ●        |                 |                  

31. Bessieres       |        ●        |        ●        |        ●        |                  

32. Rotillon        |        ●        |        ●        |                 |                  

33. Lausanne-Flon   |        ●        |        ●        |        ●        |                  

34. Riponne-M.Bej.  |                 |                 |                 |        ●          

 

Figure 10: Evolution of the stop policy of L60 in the direction R. Described stops in bold. 

Erased stops in red. 

 

4.1.3 Correlation Matrix 

 

If multiple regressors are strongly multicollinear, the coefficient on one or more of these 

regressors will be imprecisely estimated and the standard errors will increase (Stock & Watson, 

2002). Consequently, two correlation matrixes are presented in Table 5 and Table 6 below. The 

aim of a correlation matrix is to observe if potential predictors are multicollinear with one 

another. The reason for drawing two tables is justified by the fact that the underlying method 

uses dummy variables. Without diving into the details, it is generally assumed that tetrachoric 

correlations produce more precise estimates for binary variables (Ethington, 1987). However, 

continuous variables as “load factor” and “travel time” were also widely thematized in the 

upstream analysis. Therefore, the more widely used Pearson‘s correlation is used to measure 

linear association between these continuous variables (Liu, 2019) and to justify the exclusion 

of “load factor” from the analysis. 
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 i.aug19 i.line60 i.mp 

i.aug19 1   

i.line60 0.0815*** 1  

i.mp -0.1397*** 0.1764*** 1 

* p < 0.05, ** p < 0.01, *** p < 0.001 

Table 5: Tetrachoric Correlation matrix for binar3y variables 

 

 TT load factor i.MP bus per 

hour 

TT 1    

load factor -0.00278 1   

i.mp 0.147*** 0.694*** 1  

bus per hour 0.432*** 0.0650*** 0.347*** 1 

* p < 0.05, ** p < 0.01, *** p < 0.001 

Table 6: Pearson Correlation matrix 

 

  

Two major elements can be deducted from Table 5 and Table 6. First, no problematic 

multicollinearity is to be inferred between the three binary variables in Table 3. This is a major 

milestone as it allows to test and perform regressions based on these variables and to hope for 

consistent and efficient estimates. Second, the correlation between “load factor” and “i.mp” is 

0.694 and stat. sig at 0.001 level, indicating a strong linear relationship between the crowding 

observed inside vehicles and the morning peak1. This result makes a lot of sense. However, it 

also means that a choice must be made between both variables. As the underlying differences 

estimations utilizes a dummy variable for both the treatment dimension and the time dimension, 

it is also necessary selecting the dummy variable “i.mp” and thus erasing the “load factor” from 

the analysis.  

 

 
1 Although “i.mp” is a dummy, it was necessary also including it in Table 4 to demonstrate that a choice must be 

made between the “load factor” and the “i.mp” because of the obvious multicollinearity between these two 

variables 
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4.1.4 Parallel Trends 

 

A natural way to check for the validity of difference estimation design is to examine pre-

treatment outcomes, whereas similar pre-treatment trends lends credibility to the fulfillment of 

the parallel trends assumption (Angrist & Pischke, J-S., 2009). As proposed by Bertrand et al. 

(2004), we test the presence of differential pre-trends by running a regression of the outcome 

on a time trend interacted with the treatment indicator using pre-treatment data. More 

specifically, we run the same DiD-regression as will be run in the second model (M2) in the 

regression results. 

 

Table 7: Test Parallel Trends Pre- Treatment 

 (1)  

 DiD p-value 
VARIABLES charge ----- 

   
time_trend_before 0.00157 0.963 

 (0.0336)  

1.line60 7.978*** 0.003 

 (2.682)  

1.line60#c.time_trend_before 0.188 0.270 

 (0.170)  

1.line6 7.809*** 0.000 

 

1.line64 

 

Constant 
 

 

Observations 

R-squared 

(0.664) 

0.515 

(1.022) 

15.25*** 
(0.622) 

 

970 

0.144 

 

0.614 

‘Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

The results in Table 7 provide limited evidence supporting the validation of the parallel trends 

assumption. Although the pre-treatment difference-in-differences interaction term is ns at the 

0.270 level, indicating that any anticipation effects can be excluded, the R-squared is very low 

and complicates the interpretation of the table. This result only slightly strengthens the 

argument that the operator's intervention is not related to the baseline outcome. Also, the sample 

size is relatively small, which also impacts the interpretation of the results and tend to increase 

the p-values, thereby reducing the significance of the estimates. Moreover, L60 has a relatively 

high standard error, which also contributes to augmenting the p-value and thus leading to ns 

values. Moreover, it must be recalled the period after treatment was evidently influenced by the 
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COVID-19 pandemic as clearly visible in Figure 13, which perturbed the post-treatment data. 

As a result, caution should be exercised when interpreting these findings. 

 

 

Figure 11: Pre-/Post-Evolution of the average charge per month in both L60 and Control 

Lines 

 

4.2 Final Results 

 

The results are presented in Table 8. Five regressions are conducted, each one incorporating an 

incremental addition of variable interactions. The objective is to analyze the Average Treatment 

Effect on the Treated (ATT), which is represented by the introduction of double-decker buses, 

on the dependent variable “charge”. 

 

4.2.1 Regression Results 

 

All variables used in these regressions are dummy variables and depicted with a “1.” in front in 

Table 7. Note that the coefficients do not indicate the slope coefficient, but the average 

difference in the dependent variable across all the binary combinations specified. From now on, 

the variables are displayed in bold to facilitate the understanding of the results’ explanations 
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Table 8: Regression Results  

 (M1) (M2) (M3) (M4) (M5) 
 OLS DiD DiDiD 

 
DiDiD DiDiD 

with line-
specific 

constants 
 

VARIABLES charge charge charge charge charge 
      
1.aug19 6.243*** -1.547*** -1.547*** -0.112 -0.112 
 (1.016) (0.203) (0.203) (0.132) (0.117) 
  5.469*** 5.469*** -1.864*** 1.926*** 
  (0.435) (0.435) (0.149) (0.155) 
1.aug19#1.line60  7.791*** -12.07*** 2.138*** 2.138*** 
  (1.036) (0.548) (0.345) (0.339) 
1.mp    15.23*** 15.31*** 
    (0.160) (0.124) 
1.aug19#1.mp    -2.366*** -2.174*** 
    (0.271) (0.219) 
1.line60#1.mp    8.231*** 8.156*** 
    (0.459) (0.448) 
1.aug19#1.line60#1.mp   29.79*** 8.693*** 8.502*** 
   (1.113) (1.224) (1.213) 
1.line6     8.937*** 
     (0.117) 
1.line64     1.076*** 
     (0.147) 
Constant 24.34*** 18.88*** 18.88*** 10.57*** 6.777*** 
 (0.417) (0.124) (0.124) (0.0804) (0.0913) 
      
Observations 1,854 11,973 11,973 11,973 11,973 
R-squared 0.027 0.071 0.139 0.544 0.648 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

First, M1 develops a simplistic one-dimensional approach using an Ordinary Least Squares 

(OLS) regression with a single dimension. Given that only L60 is considered in this model, 

1.aug.19 represents the average difference in charge pre-/post-treatment of L60. Although the 

coef. is stat. sig. at the 0.01 level, the R-squared value indicates that only 2.7% of the variation 

is explained by the model, as the dummy variable 1.aug.19 is the sole variable capable of 

explaining the variation. In conclusion, no useful insights can be derived from this regression. 

The contribution of M1 lies in elucidating the methodology for performing M2. 
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Second, M2 represents a classical DiD estimation. Therefore, an additional dimension is added 

and the basic model in M1 has now a second dimension. Accordingly, the dummy variable 

1.line60 is added to represent L60, as opposed to the control lines. It is clearly visible that 

1.aug19#1.line60 corresponds to the subtraction of 1.aug19 in M1 with 1.aug19 in M2. 

Therefore, after adding a second dimension, the result of the DiD interaction is reinforced as 

the overall tendency represented by the control lines is negative. Note that 1.line60 represents 

the average difference in charge of L60 compared to the control lines pre-treatment. The coef. 

is stat. sig. at the 0.01 level, indicating that L60 has a higher baseline charge compared to the 

control group of 7.791 passengers. However, the R-squared value shows that solely 0.071% of 

the variation is explained by the model. Although the decision to enhance a model with 

additional variables always involves a bias-variance trade-off (Stock & Watson, 2002), this 

value is considered as too low, necessitating further analysis to achieve a better model fit. As 

no control variables are available, as discussed in Chapter 3.6.4, the strategy of triple difference 

estimations is pursued in M3-M5. 

 

Third, the purpose of M3 is purely explanatory, as it introduces a biased triple difference 

(DiDiD) regression by erasing all the additional interactions underlying the triple difference 

approach. The aim of this model is to illustrate that a DiDiD-estimation can be understood as 

the decomposition of a classical single interaction (DiD) into two double interaction 

estimations. Specifically, the estimator of the ATT is sectioned into the MP and the OP. It is 

crucial to note that the interaction term 1.aug19#1.line60 differs between M2 and M3. While 

1.aug19#1.line60 captures the overall ATT in M2, it describes the ATT in the OP specifically 

in M3, in contrast to 1.aug19#1.line60#mp, which specifies the ATT in the MP specifically. 

Although these distinctions can be confusing, they are necessary to avoid displaying numerous 

additional interaction variables and to ensure a concise presentation of the regression results, as 

shown in Table 5. 

 

Fourth, M4 presents a triple difference regression while retaining all the underlying interactions 

of the method. M4 demonstrates a substantially better fit as the R-squared reaches 54.4%. The 

three dimensions considered are henceforward aug19, line60 and mp. Consequently: 

 

o 1.aug19 (1 0 0): The coef. suggests that the av. change in charge post-treatment on the 

control lines during the OP is ns. 
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o 1.line60 (0 1 0): The coef. suggests that the av. charge pre-treatment on L60 during the 

OP is lower compared to the control lines by approx. 1.864 passengers. The coef. is stat. 

sig. at the 0.01 level. 

 

o 1.aug19#1.line60 (1 1 0): The coef. suggests that the ATT on L60 during the OP is a 

slight increase by approx. 2.138 passengers. The coef. is marginally stat. sig. at the 0.01 

level. 

 

o 1.mp (0 0 1): The coef.  suggests that the av. charge pre-treatment on the control lines 

is higher during the MP than during the OP by approx. 15.23 passengers. The coef. is 

stat. sig at the 0.01 level.  

 

o 1.aug19#1.mp (1 0 1): The coef. suggests that the av. change in charge post-treatment 

on the control lines during the MP is a decrease by approx. 2.366 passengers. The coef. 

is stat. sig at the 0.01 level.  

 

o 1.line60#1.mp (0 1 1): The coef. suggests that the av. difference in charge between the 

MP and the OP is higher on Line 60 by approximately 8.156 units compared to 1.mp. 

The coef. is stat. sig. at the 0.01 level. 

 

o 1.aug19#1.line60#1.mp (1 1 1): The coef. suggests that the ATT on L60 during the MP 

is an increase by approx. 8.693 passengers. The coef. is marginally stat. sig., at the 0.01 

level. 

 

o Constant (0 0 0): The coef. suggests that the av. charge pre-treatment on the control 

lines during the OP was approx. 10.57 passengers. The coef. is stat. sig. at the 0.01 level.  

 

Fifth, M5 enhances M4 by incorporating line-specific constants for two of the control lines: 

1.line6 and . Therefore, the new Constant is henceforth a synonym for a hypothetical 1.line2, 

which is obviously omitted to avoid the dummy variable trap. The choice for the L2 as Constant 

is based on the bias-variance generated relative to what L6 and L64 would have exhibited. As 

a result, M5 demonstrates a better fit as the R-squared increases again to 64.8% without having 

any substantial impact on the variance. Consequently: 
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o 1.aug19 (1 0 0): The coef. suggests that the av. change in charge post-treatment on L2 

during the OP is ns, as in M4. 

 

o 1.line60 (0 1 0): The coef. suggests that the av. charge pre-treatment on L60 during the 

OP is higher compared to L2 during the OP by approx. 1.926 passengers. The coef. is 

stat. sig. at the 0.01 level. This result increased by 3.79 passengers compared to M4 

because Constant henceforth represents L2 uniquely, without considering the other 

control lines.  

 

o 1.aug19#1.line60 (1 1 0): The coef. suggests that the ATT on L60 during the OP is an 

increase by approx. 2.138 passengers. The coef. is stat. sig. at the 0.01 level and stable 

compared to M4. 

 

o 1.mp (0 0 1): The coef.  suggests that the av. charge pre-treatment on L2 is higher during 

the MP than the OP by approx. 15.31 passengers. The coef. is stat. sig at the 0.01 level 

and stable compared to M4. 

 

o 1.aug19#1.mp (1 0 1): The coef. suggests that the av. change in charge post-treatment 

on L2 during the MP is a decrease by approx. 2.174 passengers. The coef. is stat. sig. at 

the 0.01 level and stable compared to M4. 

 

o 1.line60#1.mp (0 1 1): The coef. suggests that the av. difference in charge between the 

MP and the OP is higher on Line 60 by approximately 8.156 units compared to 1.mp. 

The coef. is stat. sig. at the 0.01 level and stable compared to M4. 

 

o 1.aug19#line60#1.mp (1 1 1): The coef. suggests that the ATT on L60 during the MP is 

an increase by approx. 8.502 passengers. The coef. is stat. sig. at the 0.01 level and 

slightly lower compared to M4. 

 

o 1.line6 (0 0 0): The coef. suggests that the av. charge pre-treatment on L6 during the OP 

was higher compared to L2 by approx. 8.937 passengers. The coef. is stat. sig. at the 

0.01 level. 
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o 1.line64 (0 0 0): The coef. suggests that the av. charge pre-treatment on L6 during the 

OP was higher compared to L2 by approx. 1.076 passengers. The coef. is stat. sig. at the 

0.01 level. 

 

o Constant (0 0 0): The coef. suggest that the av. charge pre-treatment on L2 during the 

OP was approx. 6.777 passengers. This is lower of 3.79 passengers compared to M4. 

Logically, this decrease is to the same extend as the increase observed in 1.line60. The 

coef. is stat. sig. at the 0.01 level.  

 

4.3 Methodological Interpretation  

 

First, it appears necessary to find a way to enrich the difference-in-differences (DiD) regression 

in M2. The low R-squared suggests a severe inability of the calculated coefficients to explain 

the variation of the data. Given the impossibility of introducing convincing control variables as 

thematized in Chapter 3.6.4, employing a triple-difference (DiDiD) regression model seems to 

have been an imperative strategy. 

 

Second, introducing the triple difference estimation to account for the differential ATT resulted 

in strongly attenuating the ATT in the OP and slightly reinforcing the ATT in the MP. On the 

basis of the single interaction 1.aug19#1.line60 of 7.791 passengers calculated in M2, the 

double interactions 1.aug19#1.line60(#0mp) and 1.aug19#1.line60#1.mp decreased to 2.138 

and increased to 8.693 respectively in M4. This non-symmetrical divergence is explained by 

the fact that part of the variation was absorbed from both estimators by the other interactions 

variables created by the DiDiD method in M4. Introducing the line-specific introduced in M5 

also lowered the estimator for 1.aug19#1.line60#1.mp from 8.693 to 8.502 in M5.  

 

Third, as the Table 8 do not provide the overview about the effective evolution of the dependent 

variable, the below calculations must be read to understand how the value of “charge” can be 

calculated based on the estimates displayed in Table 8: 

 

Pre-treatment: 

o Av. charge on L2 during the OP: Constant: 6.777 passengers 

o Av. charge on L2 during the MP: Constant + 1.mp: 6.777 + 15.31 = 22.087 passengers 
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o Av. charge on L60 during the OP: Constant + 1.line60: 6.777 + 1.926 = 8.703 

passengers  

o Av. charge on L60 during the MP: Constant + 1.line60 + 1.mp + 1.line60#1.mp: 6.777 

+ 15.31 + 8.156 + 1.926  = 32.169 passengers 

 

Post-treatment: 

o Av. charge on L2 during the OP: Constant + 1.aug19: 6.777 +(– 0.112) = 6.665 

passengers. 

o Av. charge on L2 during the MP: Constant + 1.aug19 + 1.mp + 1.aug19#1.mp: 6.777 

+(– 0.112) + 15.31 +(– 2.174) = 20.521 passengers. 

o Av. charge on L60 during the OP: Constant + 1.aug19 + 1.line60 + 1.aug19#1.line60: 

6.777 +(– 0.112) + 1.926 + 2.138 = 10.729 passengers.  

o Av. charge on L60 during the MP: Constant + 1.aug19 + 1.line60 + 1.aug19#1.line60 

+ 1.mp + 1.aug19#1.mp + 1.line60#1.mp + 1.aug19#1.line60#1.mp  : 6.777 +(– 0.112) 

+ 1.926 + 2.138 + 15.31 +(– 2.174) + 8.156 + 8.502 = 40.523 passengers.  

 

Note that it is necessary adding all the variables’ estimates to calculate the av. charge post 

treatment on L60 during the MP. Consequently, the coefficients must always be interpreted with 

great caution, as it is easy to become confused if one forgets that each coefficient is binary 

categorized across all three dimensions. 
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4.4 Efficiency 

 

The efficiency refers to the standard errors, and therefore to the precision of coefficients (Stock 

& Watson, 2002). In Table 8, M4 and M5 display smaller standard errors compared to M1 and 

M2. This implies a better efficiency of the estimates.  

 

We also employed the Variation Inflation Factor (VIF) to evaluate the precision of our model's 

estimates. Typically utilized to detect multicollinearity among predictors, the VIF is utilized 

here with the objective of underscoring why a further addition of variables to M5 in Table 8 

was halted. Typically, high VIF values indicate increased variance in the regression coefficients 

due to collinearity among predictors, compared to when predictors are orthogonal. Such 

collinearity diminishes estimator precision, validating the use of VIF not only to check for 

multicollinearity but also to assess the efficiency of our model estimates. (Murray et al., 2012) 

 

Specifically, the VIF for the �<1   predictor variable can be expressed by:   

 

���* = �** = 1
1	 −	�*&

	 , �, . . . , �,	 

 

 where  �*&  is the multiple correlation coefficient of the regression 

     between �* and the remaining p –	1 predictors. 

      (Murray et al., 2012)  

   

Although dissensus dominates in the literature about cutoff values above which a regressor must 

be excluded, the rule of thumb of a VIF’s not exceeding 5 is retained (Murray et al., 2012). 
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Table 9: Variation Inflation Factors of the Regressors 

(M1) (M2) (M3) (M4) (M5) (MX) 

 OLS DiD DiDiD 

 

DiDiD DiDiD with 

line-specific 

constants 

DiDiD with line-

specific constants 

and Travel Time 

 

VARIABLES VIF VIF VIF VIF VIF VIF 
       

1.aug19 1 1.18 1.18 2.56 2.56 2.62 

1.line60  1.46 1.46 4.21 4.44 5.91 

1.aug19#1.line60  1.65 3.55 4.73 4.73 4.77 

1.mp    1.71 1.71 2.48 

1.aug19#1.mp    3.18 3.18 3.20 

1.line60#1.mp    4.58 4.58 4.64 

1.aug19#1.line60#1.mp   2.90 4.95 4.95 5.02 

1.line6     1.34 1.53 

1.line64     1.28 28.79 

Travel Time      34.69 

       

MEAN VIF 1 1.43 2.28 3.70 3.20 9.37 

 

Based on the Variance Inflation Factor (VIF) results presented in Table 9, a nuanced perspective 

with respect to the model fit is provided. Firstly, it is evident that the introduction of additional 

interaction variables leads to an inflation of the variance. Secondly, M5 not only provides a 

better fit than M4 as previously shown in Table 8, but also demonstrates lower variance, 

highlighting its superior performance. However, it is to note that this reduction in variance is 

primarily attributable to the addition of line-specific constants, while the inflation behavior of 

most other variables remained unchanged. Thirdly, the decision to exclude Travel Time from 

the model is justified due to its significant multicollinearity with the other variables, and i.line64 

in particular, as shown in MX. An alternative model that included Travel Time but excluded 

i.line64 was also tested but showed inferior performance on both R-squared and variance 

compared to M5, leading to its exclusion from the analysis. 
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5 Discussion  

 

This chapter presents the major interpretations that can be drawn from the results, as well as 

possible implications for policy and practice. 

 

5.1 Interpretation of Results 

 

First and foremost, the diverging estimation for the morning peak (MP) and off-peak (OP) 

implies that the average treatment effect on the treated (ATT) is an increase of 2.138 passengers 

during the OP as well as an increase of 8.502 passengers during the MP. These coef. are stat. 

sig. at the 0.001 level. These results are highly encouraging as they seem to confirm the 

predominant role of crowding on ridership: When buses are empty in the OP, there is only 

limited reason for the introduction of vehicles with a higher seating capacity to have a 

substantial positive impact on ridership. As a result, ridership increases by a smaller av. number 

of 2.138 passengers. On the other hand, when buses are full in the MP, there is a valid reason 

for the introduction of vehicles with a higher seating capacity to have a substantial impact on 

ridership. As a result, ridership increases by a larger av. number of 8.502 passengers. 

Consequently, the estimate for the ATT in the MP suggests that the increase is roughly four 

times stronger compared to the OP.  

 

Second, these findings corroborate the initial hypothesis proposed in the introduction: an 

increase in service capacity leads to higher ridership. Although the "load factor" was excluded 

to prevent multicollinearity with i.mp, the ATT allows us to deduce the extent to which the rise 

in ridership can be attributed to reduced crowding externalities. Consequently, these outcomes 

also validate the second hypothesis. 

 

The results presented above are not without their potential counterarguments. For example, one 

might argue that the observed increase in ridership during the MP relative to the OP could 

simply reflect a broader trend of growing ridership during the peak hours rather than an effect 

specific to the intervention. However, this argument can be countered by the fact that the model 

already accounts this tendency through the inclusion of 1.aug19#1.mp and 1.aug(0.mp). 
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Specifically, this estimate indicates a decrease in av. ridership of 2.174 passengers in the control 

group during the MP, while the evolution during the OP remains ns.  

 

Interestingly, this result for the control group also points to a broader trend: the narrowing gap 

between peak and off-peak travel patterns. This phenomenon is consistent with larger trends 

observed both in Switzerland and internationally: In Switzerland, there is noticeable stagnation 

in commuter traffic using PT, while other types of traffic as for leisure destinations are on the 

rise (Lustenberger et al., 2021). Globally, similar shifts in transportation behavior are being 

forecasted, particularly in urban centers, as remote work becomes more prevalent (Currie et al., 

2021). 

 

5.2 Implications for Policy and Practice of the Operator 

 

The results have two major implications for the operator, which may seem contradictory. First, 

a targeted capacity increase can have a substantially higher impact when a link is experiencing 

congestion. Although the fourfold impact observed in this very specific case of L60 in direction 

R during the MP is expected to vary if the same model is applied to other scenarios, a differential 

effect in the MP as opposed to the OP appears to be undeniable. However, it must be remained 

that the dependent variable calculated represents here the number of passengers per vehicle 

averaged over each ride. However, as most passengers are not assumed to travel over the entire 

length of the line, the true number of additional PT users per ride on L60 might be substantially 

higher than the estimates for ATT displayed in Table 8. This calculation would however require 

the identification of the passengers to assess the stop at which they board and alight.  

 

On the other hand, the trend observed on the control lines during the MP also suggests a slight 

decrease of 2.174 passengers, while no significant trend is apparent in the OP. If this tendency 

persists, it could also indicate that the negative impact of crowding on ridership during 

commuter peaks might diminish in the middle and long run. Given that improvements in 

infrastructure or rolling stock require substantial financial investments, coupled with the long 

duration from decision-making to actual implementation, which can span several years, these 

results should also be interpreted as warning not to disregard the observed general trend towards 

a more evenly distributed ridership throughout the day. 
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5.3 Limitations 

 

This chapter outlines significant limitations inherent in the data and the methods used. 

 

5.3.1 Limitations related to the Data 

 

First, it's crucial to note that the dataset was dramatically reduced from over 17.6 million 

observations to just 11,973. This significant reduction was not due to random sampling but 

resulted from multiple aggregation processes designed to facilitate the performance of 

regression and to eliminate confounding effects. This aggregation restricted the analysis to 

specific lines, months, days and hours. The aggregation also involved collapsing the dataset 

such that each observation represents an entire ride rather than individual stops. Consequently, 

our approach fails to account for potential variations in crowding along the route, instead 

assuming uniform crowding throughout each ride. This is a considerable limitation, as stop-

specific crowding patterns are overlooked. As Wardman & Whelan (2011) suggest, assuming 

constant crowding levels over a specified time can lead to distortions, since crowding can 

fluctuate significantly over time and along different segments of a route. 

 

Second, the data necessitated using seating capacities as the primary metric for determining bus 

capacity, as the definition of standing capacities were inconsistent across the bus manufacturers. 

Some manufacturers formulate a maximal capacity of 3 persons per square meter, other a 

maximal capacity of 4 persons per square meter. Consequently, seating capacity served as the 

denominator for calculating crowding, as defined in Chapter 3.2. However, this metric might 

still not fully reflect the actual experience of congestion for passengers. As the dataset spans 

approx. 15 different bus models, it therefore inherently presupposes that a “load factor” of, e. 

g., 80% uniformly affects passenger perception of crowding independently of the vehicle. 

However, variation in the size of standing areas across the bus models could further influence 

perceptions of crowding. Moreover, the data is not able differentiating between seating 

passengers versus those who are standing, even though studies, such as the meta-analysis by 

Wardman & Whelan (2011), suggest significant differences in travel time multipliers between 

these two groups. 
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Thirdly, as the bus data did not allow for the inclusion of additional control variables, such as 

“travel time”, these could not be utilized due to their tendency to inflate the variance of the 

model. Furthermore, although the bus data includes both departure and arrival times for each 

ride, it lacks the level of detail found in rail data, which, starting from 2019 on, provided precise 

second-by-second departure and arrival times at each stop. Consequently, this limitation in data 

granularity significantly constrained the generation of additional control variables, such as 

travel time or service reliability. 

 

Fourthly, another significant limitation is that the analysis was confined to specific links 

available in the dataset, ignoring other potential connections. However, the origin-destination 

matrixes of passengers often extend beyond the analyzed links. As a result, the travel choice is 

also influenced by the factors of adjacent links and beyond.  

 

5.3.2 Limitations related to the Methodology 

 

The differences-in-differences-in-differences methodology, along with our exclusive use of 

dummy variables, introduces a significant limitation. This method substantially simplifies the 

analysis by assuming that the Average Treatment Effect (ATT) will remain constant from the 

day after the new buses are introduced to the end of the period for which data is available. 

However, a logical reasoning would suggest that improvements in services more likely have a 

gradual impact, as passengers might progressively adjust and integrate these changes into their 

decision-making. This simplification could bias the results, as extending the treatment period 

analysis to the first half of 2024 could potentially reveal a more pronounced effect on the ATT, 

or also not. 

 

Secondly, the decision-making process in this study did not incorporate a probabilistic approach 

to evaluating crowding impacts, which, according to Wardman & Whelan (2011), could be 

more influential on behavior than actual crowding levels. On the contrary, Wardman & Whelan 

argued that drawing on the “load factor” as a decision variable for travel choice might be 

problematic, as passengers do not necessarily know the “load factor” they will face or whether 

they will obtain a seat. Even though, real-time crowding information has enhanced passenger 

predictions through user interfaces (Hoppe et al., 2023), there's no guarantee passengers will 

utilize this information. Accordingly, Wardman & Whelan argued that it's the perceived 



 51 

likelihood of having to stand for various durations that shapes passenger behavior, rather than 

the certainty of standing for a set amount of time. For forecasting purposes, the focus should 

therefore ideally be on the probability of having to stand and how passengers respond to this 

likelihood rather than merely assessing the impacts of different definite standing durations. 

Possibly, this probabilistic approach could be better approached using a SP-approach, as by 

Kroes et al., (2014). However, we use in our analysis the “load factor” and then the morning 

peak (MP) as a proxy for crowding's influence on ridership. This simplification might seem to 

downplay the complexity of real-world interactions. Nevertheless, the meta-analysis provided 

by Wardman & Whelan (2011), also did not reveal any significant differences in outcomes 

between using a probabilistic approach and quantifying specific levels of standing time.  

 

Thirdly, not all identifying assumptions outlined in Chapter 3.6.3 could be fully adhered to. 

Specifically, two assumptions present challenges: the assumption of stable composition and the 

assumption of no spillovers between units. The stable composition assumption was 

compromised on L60 due to changes in its stop policy. This issue is partially mitigated by 

focusing on only part of the line, as detailed in Chapter 4.1.2. However, considering the 

transportation line as a cohesive unit means this limitation cannot be completely overcome. As 

for the stable composition, careful measures were taken to ensure to respect the assumption of 

absence of spillovers between the treatment and control lines.  

 

However, guaranteeing no spillover effects between the morning peak (MP) and off-peak (OP) 

periods is not feasible and represents an important downside of our study. Indeed, it is 

impossible to verify that a passenger observed on L60 traveling during the OP before the 

treatment is not the same individual observed traveling during the MP after the treatment. On 

the contrary, if crowding significantly affected L60 before the treatment, it's plausible that some 

passengers altered their travel schedules to the OP. With the reduction in crowding during the 

MP post-treatment, it’s even logical for passengers to shift their travel back to their preferred 

MP, demonstrating a potential behavioral adaptation to the changed conditions. Therefore, this 

element significantly undermines the methodology's robustness. 
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5.4 Knowledge Gaps and Future Research 

 

In the context of Switzerland, it would be insightful to explore congestion phenomena and their 

potential mitigation through capacity increases aimed at leisure travel. Specifically, tourist train 

lines experience significant crowding during peak winter days for ski destinations. Unlike the 

stagnation or decline observed in traditional commuter ridership that we observed, leisure 

traffic, according to regional train operators like RhB (2023) is burgeoning. This presents an 

opportunity to examine the impacts of alleviating congestion on routes designated primarily for 

other travel purposes. 

 

Further Research Question: “To what extent does leisure ridership in Public Transport 

respond to reductions in crowding externalities?” 

 

Unlike our study, an analysis focusing on leisure traffic could offer several benefits: 

 

1. Leisure travel during peak times could show more spatiotemporal uniformity compared 

to commuter traffic, which may facilitate a more homogeneous analysis of travel 

purposes, even if passenger identities remain unknown. 

2. Addressing leisure traffic crowding would tap into an under-researched area of public 

transportation studies, aligning with broader trends observed in ridership. 

 

Regarding the research design, the methodological framework utilized in this study, such as 

difference estimations, could be adapted while ideally incorporating a broader range of control 

variables to capture the nuances of leisure travel behaviors and their responses to changes in 

service conditions. 
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6 Conclusion 

 

This research aimed to identify the impact of congestion externalities on public transport 

ridership, guided by two primary research questions: “How do changes in the service capacity 

of public transport affect ridership?” and “To what extent can the increase in ridership be 

attributed to a decrease in crowding externalities?”. The analysis of revealed preferences data 

provided by public transport operators demonstrated that a doubling of the seating capacity 

significantly increased ridership, thereby addressing the first question. Notably, the impact was 

fourfold during the morning peak compared to the off-peak, addressing the second question. 

 

Despite initial concerns about the potential endogeneity of our research design, the data 

supported the treatment’s exogeneity. However, the possible presence of spillover effects 

between the morning peak and off-peak periods, suggesting dynamic passenger behavior 

adjustments, could compromise both the internal and external validity of the findings. 

 

Innovatively, this study managed to isolate the effect of increased vehicle capacity without 

concurrent changes in frequency—an unintended and beneficial circumstance that eliminated 

the confounding effects induced from frequency enhancements, such as the effect of reducing 

waiting times at stops. This aspect is particularly noteworthy, given that most of existing 

literature on the subject tends to focus on frequency increases. 

 

It would therefore be advantageous for future research to continue exploring congestion 

phenomena using revealed preferences data. Although our model simplifies the analysis by 

primarily using average values based on binary categories, future studies could enhance our 

proposed triple difference model by incorporating continuous data variables. This inclusion 

would allow for a more nuanced understanding of the data granularity. 
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