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ABSTRACT 

This thesis investigates the impact of foundation risks on housing prices in the Dutch real estate 

market. Despite the significant prevalence of foundation-related issues affecting between 

750,000 and 1,000,000 homes, the market may not fully account for these risks in property 

valuations. The study utilizes a comprehensive analysis of approximately 460,000 transactions 

across ten Dutch municipalities, employing hedonic pricing models and difference-in-

differences regressions to assess the influence of foundation risks while controlling for spatial 

heterogeneity. 

Key findings reveal that foundation risks are not consistently reflected in housing prices. 

Exceptions include properties on peat soils with higher differential settlement risks, showing a 

minor price decrement, and the interaction between pole rot risk and wooden foundations. 

However, these effects are modest and highlight the complexity of accurately capturing 

foundation risks in property values. Additionally, properties on clay soils command a premium, 

whereas peat soils are associated with lower prices. Substantial subsidence also negatively 

impacts property values.  

The study underscores the need for enhanced market transparency through policy interventions, 

such as mandatory foundation inspections and standardized assessments, to improve property 

valuations. By providing empirical evidence on the economic relationship between foundation 

risks and home values, this research contributes to better understanding and mitigating these 

risks, ultimately benefiting homeowners, policymakers, and financial institutions. 
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1. Introduction 

1.1 Context and Research Question 

For most, a home is more than just bricks and mortar; it's a cornerstone of stability and comfort. 

Yet, this foundational security is under threat; as droughts intensify, the environment changes 

and all over the world urban centers increase not only in size but also in density the structural 

foundations of many homes are at risk. Foundation damages are caused by external 

environmental factors such as changes in groundwater levels and subsidence rates, and they 

represent a critical yet complex challenge in urban development. These risks are influenced by 

various factors including the foundation type, the weight of the building, and the soil 

characteristics and effects are unnoticed due to their underground nature. Such complexities 

make foundation risks a significantly understudied and unacknowledged issue, despite their 

potential to severely impact property values and urban livability (Costa, Kok & Koff, 2020; 

Kok & Angelova; 2020). As these risks go unnoticed, foundation damages can lead to a decline 

in property quality, ultimately resulting in property devaluation and/or increased maintenance 

costs. 

In the Netherlands, climate change complicates matters even further. Increased droughts such 

as those in 2018 have caused an alarming number of foundation damage notifications even in 

areas where damages were not expected (KCAF, 2024). Regions such as the Netherlands, 

characterized by a dense urban development and unique hydrological and geomorphological 

conditions (Schothorst, 1977), cope with higher foundation risks (Costa, Kok & Koff, 2020; 

Kok, van der Putten & Kraus, 2021; Leusink, 2018; Willemsen, Kok & Kuik, 2020). A first-

of-its kind study by Deltares has highlighted that foundation damages pose a significant risk 

for the Netherlands, potentially affecting between 750,000 and 1,000,000 (9% to 12%) houses 

(Kok & Angelova, 2020). Recent studies project that by 2050, costs for residential real estate 

in the Netherlands due to foundational damages could reach from 20 to 60 billion EUR, 

emphasizing the urgency of this issue (Hommes et al., 2023; Kok & Angelova, 2020; Kok, van 

der Putten & Kraus, 2021). The economic ramifications of foundation damages are profound, 

with repair costs ranging between €50,000 and €100,000 per house, which constitutes 10% to 

30% of total house values (Klaassens, 2015). The implications extend beyond direct repair 

costs, influencing property devaluation and leading to increased insurance premiums.  
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Economic theory suggests that homes with expected foundation repair costs have a lower value 

than similar homes where this is not the case. Houses expected to require foundation repairs 

typically would sell for less than comparable properties without such issues, due to the 

detriment of anticipated repair expenses. When the disparity in price between a property with 

foundation risks and a similar one without matches the expense of repairing the foundation, the 

anticipated costs of damage are entirely priced in. (Hommes et al., 2023) However, where most 

housing defects can be seen and their impact on house prices measured, foundation problems 

remain hidden under the ground. Unfortunately, making an accurate assessment of the 

foundation's quality or forecasting future foundation problems is complicated. This complexity 

raises the question of whether considerations of potential foundation difficulties are included 

in the decision-making process for homebuyers.  

An additional reason for the current information gap is that a foundation report is not mandatory 

for selling a home and considering the high cost of such reports, coupled with the potential for 

a negative impact on sale prices if foundation issues are disclosed (Hommes et al, 2023), many 

sellers are deterred from investigating the state of their property's foundation. This leads to a 

lack of transparency and disclosure regarding foundation conditions in most property listings, 

potentially causing large housing market inefficiencies (RLI, 2024). The complexity of 

foundation issues, combined with the financial risks they pose to buyers, can result in 

pronounced market distortions, and have broader economic consequences. Furthermore, the 

scarcity of foundation quality data complicates the study and analysis of foundation-related 

problems. This information gap and its potential significant impacts on the housing market 

have prompted the following research question: 

“What is the effect of foundation risks on housing prices?” 

Answering this question will provide insights into the relationship between foundation risks 

and property values. Given the significance of foundation risks, it is crucial for stakeholders, 

including policymakers, financial institutions, and property owners, to understand and address 

these challenges proactively. The development and implementation of mitigation and 

adaptation measures, informed by comprehensive economic risk assessments, are essential for 

safeguarding the stability of the housing market and ensuring the long-term viability of 

residential real estate investments and public welfare. 
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1.2 Contribution and Outline 

This study contributes to the literature in several ways. First, it highlights the significant impact 

of information gaps in the housing market, particularly regarding foundation risks. It 

demonstrates that these risks are often unknown to buyers and unaccounted for in decision-

making, illuminating a critical market distortion and underscoring the need for policy 

interventions to enhance information dissemination and market efficiency.  

Second, the research aims to provide empirical evidence on the economic relationship between 

foundation risks on home values using the hedonic pricing model. A hedonic pricing method, 

applied within the Dutch real estate context, is applied to estimate the economic value attached 

to foundation risks. Hedonic pricing methods work best when the market is fully efficient, and 

all information is available to everyone (Chau & Chin, 2003). However, it has been established 

that foundation risks are often unknown. Therefore, contrary to most studies that seek to 

confirm significant effects, this research aims to demonstrate that although foundation risks are 

present, they do not impact prices due to a lack of foundation knowledge of both buyers and 

sellers. The hypothesis of the research is therefore that prices are not reflecting foundation 

risks. An important note is that proving the absence of an effect is impossible in statistics. 

Instead, it is only possible to determine if there is sufficient evidence to reject the null 

hypothesis. 

In addition to using foundation risk scores, this research incorporates the use of additional 

environmental risk drivers that contribute to these risks to account for the complex and diverse 

process of foundation deterioration. A cross-sectional dataset, which includes sale prices and 

indicators of foundation risks, will be used to prove the hypothesis. This evidence is valuable 

for policymakers and researchers who aim to work on this common yet underacknowledged 

problem. 

Third, this research extends the application of hedonic pricing theory to include foundation 

risks, subsidence and soil types, an area previously underexplored in the literature. By applying 

this method to assess the impact of foundation risks and its drivers on prices, the study not only 

showcases the versatility and utility of hedonic pricing models in capturing the economic value 

of non-market attributes but also enhances the methodological toolkit available to researchers 

and policymakers for evaluating economic impacts of environmental characteristics. 
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After this introductory section, the paper proceeds to outline the theoretical groundwork in 

section 2, incorporating discussions and existing literature on the origins and characteristics of 

foundation risks and frameworks for evaluating the economic impacts of housing 

characteristics. In section 3, the data will be described, along with the introduction of a 

comprehensive empirical framework and strategy specific to foundation risks. Section 4 

consists of the results and extra analysis while section 5 presents a discussion of the results, 

highlighting further research directions and policy implications concerning the economic 

evaluation of foundation risks. 
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2. Literature Review 

2.1 Foundations and the Dutch Housing Market 

The Netherlands' unique landscape poses significant challenges to building foundations due to 

the intensive artificial drainage of peat and clay soils, historically leading to land subsidence 

from peat oxidation and the consolidation of clay particles (Schothorst, 1977). Contrary to 

popular belief, the country's current low-lying state is largely a result of human activities such 

as land drainage. As a result, continued subsidence is expected and common as clay and peat 

soils settle following drainage and drought periods. At the same time, projected climate change 

is likely to increase both the severity and frequency of these conditions (RLI, 2024; Kok, van 

der Putten & Kraus, 2021). 

In response to these conditions, a variety of foundation types have been developed, tailored to 

different soil types, building loads, and regulatory requirements. Historically, up until the 

1970s, shallow and wooden pile foundations were commonly employed. Shallow foundations 

are placed directly on the load-bearing soil layer, sometimes enhanced to increase its bearing 

capacity. This method is cost-effective and suitable for lighter structures where the load-

supporting soil layer is near the surface. Wooden and concrete pile foundations, where piles 

are driven or screwed into the ground to reach a stable soil layer, are used for heavier structures 

or where the weak soil layers are thicker (Kok & Angelova, 2020). Since 1970, concrete pile 

foundations have become the standard due to their durability and safety. Currently, researchers 

estimate that approximately 70% (5 million) of all properties, including non-housing, have 

shallow foundations, while 5-6% (400,000) utilize wooden foundations, and the remainder are 

supported by concrete piles (RLI, 2024). 

Wooden pile foundations, particularly those on clay or peat substrates, are vulnerable to both 

differential settlement, and pole rot (bacterial degradation and fungal decay) if the timber dries 

out. Such damage often only becomes evident after decades, as the degradation processes are 

slow (Kok & Angelova, 2020). Pole rot1 can lead to a loss of load-bearing capacity after an 

average cumulative dry period of 10-20 years, causing buildings to sink. Damage to buildings 

with shallow foundations can especially occur if the building does not settle uniformly but tilts. 

 

1
 Pole and piles can be used interchangeably, from this point onward the term pole rot will be used for clarity.  
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This can be caused by variations in subsidence rates, soil composition or groundwater levels, 

and irregular property weight dispersion.  

The unique geological conditions and evolving climate of the Netherlands create a dynamic 

and often challenging environment for maintaining building foundations, which directly 

influences real estate practices and property values. Given the country's centuries-long 

experience with water and soil-related risks, Dutch regulations require homeowners to disclose 

any significant structural information about their houses. This legal mandate ensures 

transparency in the housing market, affecting property prices by disclosing defects and 

promoting repairs.  

The study by Hommes et al. (2023) delves into the prevalence of disclosures and repairs related 

to foundations in property listings and examines the implications of these practices on market 

perceptions and real estate values. The authors examined the prevalence of property 

advertisements disclosing the state of foundations and the impact of such disclosures. They 

discovered that only 2.2% of properties constructed before 1975 include information about 

their foundations, and even then, the condition of the foundations remains ambiguous in half 

of these cases. Properties identified as having 'bad' foundations exhibited a 12% decrease in 

value (€47,000) compared to expected prices without foundation damage. Conversely, 

disclosures of repaired foundations led to an average price increase of only 2% (€13,500). Thus, 

the average price disparity amounts to over €60,000, likely reflecting the costs of foundation 

renovations, which are estimated to range from €50,000 to €100,000. The authors analyzed 

how foundation issues affect home prices, finding that the impact is smallest for apartments 

(~10% depreciation) and slightly greater for other home types. Due to higher valuations, the 

same percentage decrease translates into a larger absolute loss in value for detached homes. 

Conversely, the price increase from repaired foundations is higher for detached homes (~6%) 

compared to other house types (~2%). This difference is likely because repair costs for 

detached homes are covered by fewer owners, whereas for apartments and other connected 

homes, costs are shared among multiple owners, reducing the per-homeowner expense. 

Overall, Hommes et al. (2023) confirm that foundation issues are factored into prices when 

their condition is disclosed. 

Adding to these findings, Clayton (1997) highlight the cognitive biases that further complicate 

market dynamics, especially in assessing risks like those associated with foundations. Clayton 
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(1997) points out that rational price expectations often diverge from actual outcomes, reflecting 

the imperfect nature of the housing market. This imperfection is partly due to human behavior 

as Salzman and Zwinkels describe (2017), where over-optimism and over-confidence skew 

buyers' perceptions of risk. This cognitive bias suggests that even when foundation issues are 

known and disclosed, the actual impact on property values might be underappreciated by the 

market. Sellers might choose to underreport or omit foundation issues due to fear of significant 

devaluation, while buyers are overconfident and look away from potential problems. The lack 

of transparency and communication exacerbates the problem of foundation risk underpricing. 

2.2 Hedonic Pricing 

The research on housing markets and measuring housing preferences is extensive. Kok and 

Costa (2021) performed a literature review and highlight significant gaps in the research on the 

economic cost assessment of subsidence, noting the absence of a standardized framework 

which hampers effective decision-making and knowledge sharing across studies. Despite the 

complexities and potential for market distortions, hedonic pricing stands out for its ability to 

derive value estimates directly from market behaviors and real transactions.  

The price of a house is often determined by a combination of factors and the marginal 

willingness to pay for those attributes. The quantitative effects of these characteristics are often 

measured through hedonic pricing models. The method is based on the fact that the price of a 

house often consists of a combination of structural (e.g. size, quality and construction year), 

locational (e.g. nearby parking facilities, greenspace, distance to highway) and neighborhood 

(e.g. average neighborhood income, age, and education level) attributes. The hedonic price 

function can be described as the equilibrium pricing of different varieties of a heterogeneous 

good, influenced by the dynamics of supply and demand. The relative price of a house results 

from the combined effect of its different attributes and on the property market demand and 

supply determine the characteristics’ marginal contributions to the total value of the bundle of 

characteristics. The values of these attributes, estimated through regression analysis, together 

determine the house's position in the housing market.  
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The basic form of a hedonic pricing model, as conceptualized by Rosen (1974), posits that the 

price of a house can be expressed as a function of its property attributes: 𝑃 = 𝑃(𝑋) 

Here, X represents a vector of housing characteristics, which includes structural variables such 

as size and age, as well as locational variables like proximity to the city center and highways, 

all of which collectively describe the quality of the housing. The model can further be extended 

to encompass neighborhood characteristics such as average income, crime levels, and school 

quality. In this context, household utility U would then be a function of both the consumption 

of housing X and a composite good C: 𝑈 = 𝑢(𝑋, 𝐶) 

Each consumer selects values of X and C to maximize their utility, subject to a budget constraint 

M, where M equals the total expenditure on housing and composite goods, and assuming the 

unit price of the composite good is 1: 

 𝑀 = 𝑃(𝑋) + 𝐶 

To solve this a Lagrangian function is applied, which then gives the first order condition:  𝜕𝑈𝜕𝑋𝜕𝑈𝜕𝐶 = 𝜕𝑃(𝑋)𝜕𝑋  

This equation indicates that the change in utility from a marginal increase in 𝑋 is equivalent to 

the change in property price for the same increase in 𝑋, assuming all other factors remain 

constant. In essence, this condition shows that the marginal willingness to pay (MWTP) for a 

specific housing quality X is equal to the first derivative of the price with respect to that quality. 

It implies that the rate at which consumers are willing to trade housing quality for a composite 

good, holding utility constant, is reflected in the slope of the hedonic price function.  

The hedonic method was pioneered by Court (1939) to model the prices of cars as a function 

of their characteristics. The method was then popularized by Griliches (1961) and Rosen (1974) 

formalized the method by linking the method with microeconomic supply and demand theories. 

The method has since then been adapted in many research areas and has been used extensively 
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for scientific studies on multidimensional commodities such as housing. Ridker and Henning 

(1967) were the first researchers who used the method for residential properties by measuring 

the relationship between air quality and home values. Nevertheless, Freeman (1979) was the 

first who also supplied the theoretical justification for hedonic approach, using the hedonic 

price equations to calculate marginal implicit prices and the marginal willingness to pay for 

environmental benefits. Researchers have since then used the method to infer the effects of 

property attributes such as age (Goodman & Thibodeau, 1997; Rubin, 1993), location 

(Heyman, Law & Berghauser, 2018; Kiel & Zabel, 2008) size (Kagie & Wezel, 2007), open 

space (Brander & Koetse, 2011; Sander & Polansky, 2009), and green space (Czembrowski & 

Kronenberg, 2016; Morancho, 2003; Panduro & Veie, 2013). According to Sirmans, 

Macpherson and Zietz (2005) the most studied characteristics in hedonic pricing are age, size, 

garage space, fireplaces and air conditioning. Malpezi (2003) denotes that the most common 

variables in hedonic price analyses are; number of rooms, floor area, house type category, 

availability of heating and cooling, age, structural features, and structural materials used and 

their respective quality. Although there has been a lot of discussions on the implicit value of 

structural characteristics of housing (16 studies in 2010) most papers focus on neighborhood 

characteristics (178 papers in 2010) (Herath & Maier, 2010). This paper will aim to use both 

neighborhood risk levels and individual property risk as estimates for house prices.  

There are also papers using the hedonic estimation to investigate the effects of structural 

attributes by looking at depreciation and maintenance (Armengot, Williams & Padial, 2021; 

Billings, 2015; Francke & van de Minnde, 2017; Harding, Rosenthal & Sirmans, 2007; 

Wilhelmsson, 2008). A common proxy measure for depreciation in hedonic pricing models is 

property age. Through an extensive literature review Malpezzi et al. (1987) showed that on 

average home prices decrease with age at a declining rate although they vary widely between 

studies based on method, region and time periods. Billings (2015) contributes to the discussion 

by noting that structural renovations in housing can introduce a bias in hedonic models 

designed to assess attribute impacts on housing values. Including detailed renovation data from 

Charlotte, North Carolina, revealed this bias, which tends to skew hedonic indices positively. 

However, the author considers this renovation bias to be minor, impacting research outcomes 

only slightly and categorizing it as a secondary concern in research design. Wilhelmsson (2008) 

studied the effects of maintenance on housing values in Stockholm and found a price difference 

of 13% between well maintained houses and those that were not. Using a hedonic analysis, 
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Francke & van de Minne (2017) observed that after half a century of neglecting residential 

housing maintenance in ‘s Hertogenbosch, a depreciation of 48% was noted, indicating an 

annual decrease of around 1%. At the same time, Harding, Rosenthal and Sirmans (2007) used 

a repeated sales model to find that without maintenance houses depreciate on average 2.5% 

annually while maintained houses depreciate only 2% per year. Armengot, Williams and Padial 

(2021) show that the relationship between a building's depreciation and its maintenance 

requirements is not straightforward. Structures from various time periods and construction eras 

have distinct maintenance needs. This variation aligns with the different foundation types used 

in various eras, which likely results in qualitative differences. These findings corroborate that 

age is an important factor to consider when analyzing structural characteristics such as 

foundations.  

Hedonic pricing methods have also been used to assess the impact of environmental processes 

such as floods (Bui, Wen & Sharp, 2022), earthquakes (Koster & van Ommeren, 2015), and 

wildfires (Donovan, Champ & Butry, 2007) on property values. Donovan, Champ and Butry 

(2007) stated that when publishing wildfire risk ratings, the increased awareness had negative 

impacts on prices. Koster and van Ommeren (2015) found that even with full compensation of 

damages house prices were still lower, which the authors interpret as being an indicator for 

discomfort in the future. 

While the hedonic pricing literature is extensive, empirical research on the effects of foundation 

damages and/or risks on house prices is scarce. The most important scientific papers on using 

hedonic pricing to discover the impact of foundation risks and subsidence are by Willemsen, 

Kok & Kuik (2020), and Yoo and Perring (2017). Yoo and Perring (2017) find that subsidence 

due to water depletion leads to a lowering of property values between 5% to 11% for homes 

that are located close to land subsidence features in Arizona (USA). Willemsen, Kok & Kuik 

(2020) were the first to have used hedonic pricing analysis for subsidence risks in the 

Netherlands and found a negative and significant effect (-6% and -7%) of (uniform) subsidence 

on real estate values. However, critique can be issued over their data generalizability, dealing 

with omitted variables, and reliance on historical data without addressing future risks 

comprehensively.  
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While the economic effects of subsidence have been acknowledged, the relationship of 

different soil types with house prices is unknown as no previous high-quality studies were 

found in the literature. Westerveld and van den Hurk (1973) do recognize that soil types played 

a large role in urban planning and development in the Netherlands. They also denote that the 

rapid increase of cities in the 20th century required many previously unsuitable lands to be 

improved through adding sand layers on top of soil and peat soils. Unfortunately, the exact 

relationships between soil types, city development and house prices remain an understudied 

phenomenon.  
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3. Methodology 

3.1 Study Area 

This research will focus on ten municipalities in the Netherlands as shown in Figure 1. This 

sample was selected due to data accessibility and in agreement with the thesis supervisors. 

While a lot of regions in the Netherlands deal with foundation damages and risks these 

municipalities were selected based on known foundation issues and a preference for a diverse 

group of municipalities. All are in regions with dense urban areas while some also include rural 

area (e.g. Alphen aan den Rijn).  

 

Figure 1. Study area.  

Figures 2 and 3 show that soil types and subsidence rates vary widely between and within the 

municipalities. The western parts of the Netherlands typically have a wide variety of soil types 

and subsidence rates due to their history of Holocene marine and fluvial sediments. They often 

suffer from widespread ground settlements which is primarily driven by the presence of highly 

compressible fine-grained ‘soft soils’ such as clay and peat (Den Haan & Kruse, 2007). These 

types of soils are extra vulnerable to subsidence and droughts due to their high permeability 

and the settling and oxidations of particles (van den Born et al., 2016).  
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Figures 2 and 3. Soil types and subsidence.  

3.2 Data 

The data used in this paper comes from a combination of sources2 and was edited and pre-

processed through STATA 17 (StataCorp, 2024) and QGIS (QGIS.org, 204). The main 

variables that are used in the regression are the neighborhood risks. The risks for Dutch 

neighborhoods concerning foundations were calculated by Deltares (Kok & Anglova, 2020) 

and published on the Climate Impact Atlas website (Kok, 2021). The method used by Kok & 

Anglova (2020) and based on the paper by Costa, Kok and Koff (2020). Their method involved 

calculating the minimum and maximum damages per property based on five classified damage 

categories and multiplying these with the probabilities of a foundation type. At the basis of 

their risk assessment lies the conceptual framework of the UNISDR (2016) based on hazard, 

exposure, and vulnerability. The advantage of their method is that it is suited for large-scale 

applications due to its ability to establish correlations between varying hazard levels, building 

characteristics, and expected damages, allowing for spatial extension and flexibility with 

incremental data improvements. 

Their methodology for assessing pole rot risks consisted of three steps. Initially, for each 

property, the likelihood of it being built on wooden foundations was calculated. Then, 

 

2 The additional research portfolio contains an expansive summary of the data used in this study. 



 

19 

 

properties are assigned to a sensitivity class (low, medium, high), which was dependent on 

groundwater levels, the depth of the uppermost part of the foundation pole, and soil type at the 

pole head level. Based on the sensitivity level, property age, and soil type the damage levels 

per property were calculated.  

The differential settlement risk analysis used a similar method, also using the probabilities a 

house has shallow foundations. To assess sensitivity, subsidence data and factors influencing 

differential settlement were analyzed. These factors include the thickness of the fill layer, soil 

heterogeneity within neighborhoods, and the increased susceptibility of properties on clay to 

differential settlement. Additionally, structural characteristics such as the presence of a cellar 

were considered. Based on the settlement speed per year (corrected for property and soil 

sensitivity) each property was assigned to a damage class.  These damage classes per property 

(both for pole rot and differential settlement) were multiplied with the foundation type 

probabilities to calculate expected damages. The researchers did not know current damage 

levels or past repairs, so results are the cumulative (nominal) damages from construction year 

till 2050 (assuming repairs are done before 2050). For both risks, damages were calculated 

with mild and strong climate change under the WH-climate scenario (Klein Tank et al., 2014).  

While the risk data was calculated per property the available online dataset is aggregated on 

neighborhood level. The neighborhood risk scores were calculated by: 

𝑅𝑖𝑠𝑘𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 = 𝛴(#𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠𝑑𝑎𝑚𝑎𝑔𝑒𝑐𝑙𝑎𝑠𝑠 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑎𝑚𝑎𝑔𝑒𝑐𝑙𝑎𝑠𝑠)# 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠   
This calculation implicates that a high-risk score can signal that a neighborhood has many 

properties on a sensitive foundation with a low average damage class, or a smaller number of 

properties on a sensitive foundation but with high expected damage. To account for this, the 

method will apply property specific controls and risk driver interaction terms.  

The subsidence map was obtained from Y.R. Premchand (VU affiliated PhD student) and was 

developed by van der Meulen et al (2007) and Fokker et al (2019). The map (Figure 3) shows 

the expected subsidence in 2050 in meters on a 100m x 100m grid. Parts of the map that had 

missing values (denoted with -1) were excluded. To account for subsidence occurring not just 

at the location of the point layer of the house, and subsidence being an increased problem if 

there are varying subsidence rates occurring under the house, a buffer was created for each 
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property. This buffer was calculated using the size variable and dividing it by 0.9 to achieve 

average ground space (Regiocontainer, 2019). Using zonal statistics on the subsidence layer, 

mean and median subsidence was determined per property polygon. An additional 

transformation was done dividing the meters expected subsidence in 2050 by 30 (years) and 

multiplying these with 1000 to find the expected millimeter subsidence per year. 

To investigate the relationship between soil types and prices, a 2022 soil quality map was 

obtained from TNO (Appendix F). The soil types are shown in Figure 2 and are composed of 

safe (or sandy) soils, clay, clay/peat and peat soils. The soil type layer is structured as a 100 x 

100m grid and covers the entirety of the Netherlands. For this map and the other previous 

datasets, the data was prepared to only encompass the ten municipalities in the study area using 

administrative boundaries shapefiles from the non-departmental public body Kadaster (PDOK, 

2024). All the previously mentioned spatial datafiles were adjusted and reprojected to the same 

spatial index in QGIS (RD New).  

In hedonic models, one common and straightforward method to account for spatial factors is 

to include the distance from each property to the central business district (CBD) as an 

explanatory variable (Herath & Maier, 2010). However, since Dutch cities typically lack 

distinct CBDs but feature historic centers that attract residential preference, the distance to 

these centers were used as a control. Consequently, a point layer was created3, marking a central 

point in each municipality to represent these centers. Using this spatial framework, the distance 

to the nearest center for each property was calculated employing the Euclidean distance 

formula4 based on their x and y coordinates.  

The property dataset of transactions and related property variables was obtained from the Dutch 

Association of Real Estate Agents (NVM) through the VU (Appendix F). The dataset contains 

information and variables on 468,361 house transactions between 2001 and 2022 in the study 

area.  

 

 

  

 

3 The creation of center points was done based on the QGIS Open Street Map, using the centroids feature. 
4 The Euclidian distance is the straight-line segment distance between two points (Danielsson, 1980). 
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3.3 Pre-processing and Descriptives 

As the data was gathered from several sources multiple steps were taken to clean the data and 

prepare it for analysis. As most of the transaction data cleaning had been done by the VU staff 

before sharing it, not a lot of steps were necessary. First, all observations that had missing 

values for any of the risk indicators, missing neighborhood ID’s or negative rooms were 

removed (this led to 10,497 transactions being deleted). Secondly, residuals from a basic 

regression model were examined. Standardized residuals greater than 3 or less than -3 were 

flagged as outliers and dropped as these extreme values can potentially skew the analysis 

(which led to 1,728 dropped transactions). Due to house prices being highly skewed these were 

log-transformed to further ease the computation and interpretability. Other steps that were done 

included calculating the subsidence values to mm per year, normalizing the foundation 

probabilities, and adding a pre-1970 dummy. In Table 1 the descriptive statistics of the final 

sample are described, Appendix F contains the scripts for the data cleaning and further 

information on risk variables per municipality can be found in Appendix B. 

Table 1: Descriptive Statistics 

 Variable  Mean  Std. Dev.  Min  Max 

 Price (in euro) 304048 256657 25000 8500000 

 Price (in euro per m2) 3055 1725 307 24285 

 Log Price 12.42 .59 10.13 15.95 

 Pole Rot Risk (in 2050) 1.8922 3.7514 0 37.43 

 Differential Settlement Risk (in 2050) 1.521 5.0742 0 90 

 Probability of Shallow Foundations .0611 .1748 0 1 

 Probability of Wooden Foundations .1694 .3331 0 1 

 Probability of Safe Foundations .7688 .3887 0 1 

 Size (in m2) 101.26 46.76 25 858 

 Number of Rooms 3.8 1.5 1 24 

 Distance to Center (in km) 3.0671 2.2187 .0288 25.211 

 Subsidence (in m in 2050) .0697 .1154 0 .6511 

 Subsidence (in mm/year) 2.324 3.8463 0 21.70 

 Subsidence Variety 1.4526 .7126 1 4 

 Sandy Soil .4445 .4969 0 1 

 Clay Soil .0989 .2985 0 1 

 Clay/Peat Soil .3234 .4678 0 1 
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 Variable  Mean  Std. Dev.  Min  Max 

 Peat Soil .1332 .3398 0 1 

 Apartment .6058 .4887 0 1 

 Terraced House .2542 .4354 0 1 

 Semi-Detached House .1177 .3222 0 1 

 Detached House .0223 .1477 0 1 

 Garden .7099 .4538 0 1 

 Maintenance Outside .7611 .1093 0 1 

 Maintenance Inside .7514 .1416 0 1 

 Good Maintenance .8513 .3557 0 1 

 Listed Building .0202 .1406 0 1 

 Constructed before 1906 .1066 .3085 0 1 

 Constructed between 1906-1930 .1853 .3885 0 1 

 Constructed between 1931-1944 .1073 .3095 0 1 

 Constructed between 1945-1959 .0652 .2468 0 1 

 Constructed between 1960-1970 .1218 .3271 0 1 

 Constructed between 1971-1980 .1121 .3155 0 1 

 Constructed between 1981-1990 .1156 .3197 0 1 

 Constructed between 1991-2000 .0987 .2983 0 1 

 Constructed between 2001-2010 .0686 .2527 0 1 

 Constructed between 2011-2020 .0184 .1345 0 1 

 Constructed in 2021 .0004 .0206 0 1 

 Constructed before 1970 .5922 .4914 0 1 

 Property Age (inferred) 63.15 60.11 0 1016 

Note: The number of observations is 456,136. 

Table 1 summarizes the descriptive statistics, showing that the average house price is €304,048 

and the average price per square meter is €3,055. While the average property price in 2021 was 

€387,000 (CBS, 2022) the reason the average sample price is lower because the transactions 

span from 2001 to 2021. For the analysis, risk variables were added to the NVM dataset. First, 

the predicted (yearly) median subsidence values to each house, giving an expected ~0.07-meter 

subsidence for houses in 2050 and ~2.3 millimeter annually. This number is much lower than 

the average subsidence rates in the western part of the country (8 millimeters) (Stouthamer & 

van Asselen, 2015). The possible reason for this dispersion is probably that in rural areas the 

subsidence rates are much higher than for urban regions (RLI, 2020). 
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Because the neighborhood risk is the most important variable in this study, this will be 

discussed in more detail. The neighborhood risk variables were obtained from the Climate 

Impact Atlas website (Kok, 2021) and are based on the study by Kok & Anglova from Deltares 

(2020). These data provide neighborhood risk levels for both pole rot and differential 

settlement across various time periods and climate scenarios. For both risk indicators, the 

average risk in 2050 was calculated using the mild and strong climate scenario scores per 

property, yielding an average risk of 1.89 for pole rot (with a standard deviation of ~3.8) and 

1.5 (with a standard deviation of ~5.1) for differential settlement. Although the mean values 

for this variable are close to 0, the maximum values are quite high. The distribution of the risk 

variables in Figure 4 show they are highly skewed.  

 

Figure 4. Distribution of neighborhood risk scores. 
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The average risk scores per construction year were plotted in Figure 5 and show pole rot risks 

are much higher for properties build before 1950. This pattern of older properties having higher 

pole rot risk is expected seeing that property age was used as an indicator of pole rot risk. 

Differential settlement risks show higher and more irregular risk patterns between ~1960 and 

~2010 compared to pole rot risk.  

Figure 5. Average risk scores by construction year5. 

The pole rot risk variables seem to be partly correlated with construction age, which is also 

what the correlation matrices in Appendix E and literature seem to suggest (Klaassen, 2008). 

The distribution of the risk variables across municipalities (Table B1) also shows pole rot risks 

are most common in the older cities of Amsterdam, Zaanstad and Haarlem. Differential 

settlement risks seem to be most prominent in Zaanstad, Amsterdam and Zoetermeer. 

Additionally, this research utilized tables from Deltares that provided probabilities for specific 

foundation types based on age category, soil type, and region (Kok & Anglova, 2020). These 

tables were manually transformed into a foundation probabilities dataset (Appendix F) and 

merged with the transaction data to assign foundation probabilities to each house. The mean 

probabilities for houses were approximately 0.06 for shallow foundations (6%), 0.17 for 

wooden foundations (17%), and 0.77 for concrete/safe foundations (77%). The soil type 

 

5
 The inferred construction years from 1850 onward were used due to not every construction year being available 

and visibility reasons. The oldest property in the dataset stems from 1005. 
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descriptives show that the most common soil occurring under houses is sandy/safe soil (44%) 

with clay, peat/clay and peat soil types composing of 9%, 32% and 13% of the sample.  

A notably high prevalence of apartments at ~60% makes sense considering dense cities such 

as Amsterdam and Rotterdam are part of the sample. Conversely, the relatively low prevalence 

of detached houses at only ~2% is also a result of the highly urbanized municipalities that were 

chosen. A significant majority of properties exhibit good maintenance with ~85% reported as 

in good condition and ~76% showing good exterior maintenance. These high percentages 

suggest that the housing stock is generally well-maintained and a majority of houses do not 

show foundation damages like wall cracks. Moreover, the data demonstrates that a substantial 

portion of properties, approximately 59%, was constructed before 1970, meaning they have a 

higher chance of foundation risks and damages. The reason the construction year was not 

described in this table is because ~70 thousand observations do not have a construction year 

listed and this research used construction age categories.  

The correlations between the variables are presented in Appendix E. The first matrix shows the 

correlations between the property specific characteristics and log price. Most correlations were 

expected such as between size and rooms, apartment, and terraced/size/rooms, listed and 

distance to the center, maintenance inside and outside. Unexpected correlations include a 

negative relationship between gardens and price, possibly due to gardens occurring in more 

suburban cheaper areas. The second correlation matrix shows the risk variables together with 

the age of a building when sold and a pre-1970 dummy. Most strong correlations are expected 

because pole rot and differential settlement risk were (partly) calculated using property age, 

soil types, subsidence, and the foundation probabilities. Foundation probabilities were also 

calculated using property age and soil types, so these relationships were also expected. Not 

surprisingly, subsidence is correlated quite strongly with soil types as subsidence occurs more 

peat soils and less on sandy soils. However, the negative correlation between clay and 

subsidence is surprising as theory would suggest subsidence to be occurring in clay soils. This 

relationship could partly be explained by the fact that subsidence of clay layers is dependent 

on the type of clay, type of built-up area and thickness of the layer (Koster, Stafleu & 

Stouthamer, 2018; RLI, 2024). The spatial patterns of the clay diversity and its relationship 

with subsidence are not studied in this paper but could be in further research. Prices are mainly 

correlated with age of properties and pole rot risks. This relationship probably exists because 

older houses are often located in city centers which have higher prices and pole rot risks are 
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partly dependent on building age. Additionally, older homes are sold for a premium above a 

certain age and due to vintage effects (Koster, van Ommeren and Rietveld, 2016; Rolheiser, 

van Dijk & van de Minne, 2020).  

3.3 Empirical Framework 

This paper aims to estimate the causal effect of foundation risks on house prices. Theoretically, 

homebuyers can know beforehand if a property has suffered foundation damages or is at risk 

of them occurring in the future. Following hedonic pricing theory, it can be assumed that riskier 

houses will have a discounted value compared to those that have safe/high quality foundations. 

However, due to a lack of knowledge, the relationship between risks and prices is likely 

nonexistent or very small. To investigate this assumption, the risk indicators described in the 

previous section will be used as determinants of property prices to see if they affect prices at 

all. 

Although using hedonic pricing for real estate analysis has been criticized due to nonlinearity, 

multicollinearity and heteroskedasticity problems it is still the most common method due to its 

flexibility, easiness, and few restrictions (Kuminoff, Parmeter & Pope, 2010; Owusu-Ansah, 

2011; Palmquist, 2005). The most prevalent statistical model used in hedonic pricing is the 

ordinary least squares (OLS) regression and is therefore also used in this study (Mayer et al., 

2019: Yoo & Perring, 2016).  

For hedonic pricing methods, estimation issues could arise because houses have an almost 

limitless number of independent variables and if they are not all included in the model, the 

coefficients can become biased (Kuminoff, Parmeter & Pope, 2010; Mayer et al., 2019). It is 

therefore of great importance to choose the correct functional form and check for 

multicollinearity issues and omitted variable bias (OVB). There is no consensus on the 

appropriate functional form as economic theory generally doesn’t provide guidance on the 

correct specification (Cassel & Mendelsohn, 1985; Palmquist, 2005), although models that 

included all variables and simpler functional forms such as linear, log-linear, log-log and linear 

Box-Cox functions are recommended (Cropper et al., 1988; Kuminoff, Parmeter & Pope, 

2010).  

 The log-linear form of the OLS model was chosen to allow for easier interpretation of marginal 

effects and it is performing well to uncover marginal implicit prices even if mis specified 
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(Cropper et al., 1988; Mayer et al., 2019; Yoo & Perring, 2016). Additionally, log-linear 

models are particularly well-suited for analyzing housing price data, which is often heavily 

skewed by outliers. These models not only provide coefficients that are intuitive and 

interpretable as (semi-)elasticities but also help minimize the problem of heteroscedasticity, 

leading to residuals that are closer to normal distribution. Because of these advantages it is also 

the most common form of specification in real estate analysis (Herath & Maier, 2010). Given 

the logarithmic nature of the dependent risk variable, the following equation is used to convert 

the coefficients into percentages: 

(𝑒𝑥𝑝(𝛽) − 1) × 100     (1) 

3.4 Empirical Strategy 

The model used in this research is a hedonic regression of the log house price on explanatory 

variables. The hedonic price equation to be estimated can be expressed in the most general 

form as: 𝑙𝑛(𝑃𝑖𝑡) = 𝑎 +  𝛽𝑋𝑖 + 𝜃𝑡 +  𝘀𝑖𝑡    (2) 

where 𝑎, 𝛽, and 𝜃 are the parameters to be estimated. The dependent variable 𝑙𝑛(𝑃𝑖𝑡) represents 

the log house price for property i in year t, 𝑎 represents the intercept, 𝑋𝑖 includes a vector of 

attributes for property i, 𝜃𝑡  captures the year (21) fixed effects to control for annual price trends, 

and 𝘀𝑖𝑡 is the identically and independently error term. This setup provides a baseline 

understanding of how different property attributes influence the price without any foundation 

risks. The property controls in 𝑋𝑖 are composed of size, rooms, property types, garden, 

maintenance inside and outside and the neighborhood variable distance to the center. 

Obviously, for categorical dummy variables one category is omitted to avoid the dummy trap.  

An important consideration in the hedonic pricing method in combination with house qualities 

and maintenance is the impact of property age. While the dataset includes information on both 

interior and exterior maintenance of a house, the quality of the foundations is related to age and 

unrelated to maintenance. As a property ages, the risks associated with its foundation also 

increases, especially for pole rot risks (section 2.1). However, due to age being correlated to 

many property and neighborhood variables and foundation (quality) data not being available, 

age cannot be used as a direct measure for foundation risk impacts. Still, it is important to 
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include property age as a factor in the hedonic equation. Goodman and Thibodeau (1997) 

showed that housing deprecation is non-linear and “dwelling age-induced heteroskedasticity is 

prevalent in hedonic house price equations”. They explain that as the age of a property 

increases, the price can vary more due to varying rates of deterioration of older houses and the 

longer time available for modifications such as renovations and expansions. 

At the same time, historical vintage effects can positively increase the prices of older houses 

and surrounding buildings (Koster & van Ommeren, 2016; Wilhelmsson, 2008). Thus, to 

control for the vintage/historical age effects the variable listed is added to vector 𝑋𝑖. An 

additional control for property age are construction year decade dummies that are represented 

by vector 𝐷𝑖 representing 11 construction year dummies for property i. 

One of the main issues for hedonic methods is the issue of OVB, especially because of spatial 

and temporal correlation in the error term. The residual correlation is often caused by 

misspecification of spatially delineated variables, systematic mismeasurement of regressors or 

spatial covariates not being included (Von Graevenitz & Panduro, 2015). It is crucial to account 

for other spatial factors that might correlate with both foundation risks and house prices to 

avoid biased estimates. For instance, certain risk values might be more prevalent in areas with 

superior amenities or higher environmental quality. Failing to control for these factors could 

obscure the true effect of risk on house prices, resulting in biased coefficients and standard 

errors (Anselin, 2010). To mitigate these issues, researchers often employ spatial weight 

matrices, spatial fixed effects, or quasi-experimental methods such as difference-in-differences 

techniques. Despite the potential benefits of spatial models like spatial error, spatial lag, or 

spatial Durbin models, this research avoids these due to the unknown functional forms and 

spatial weights, leading to identification problems (Gibbons and Overman, 2012). A literature 

review by Kuminoff, Parmeter, and Pope (2010) revealed that approximately 60% of studies 

using hedonic pricing methods apply spatial fixed effects to address OVB (and 40% use 

temporal fixed effects). Implementing spatial fixed effects significantly reduces bias from 

spatially omitted variables by absorbing the price effects of spatially clustered unobserved 

factors (Kuminoff, Parmeter, & Pope, 2010; Zabel, 1999). These spatial fixed effects account 

for unobserved, time-invariant spatial attributes that influence house prices, thus enhancing the 

robustness of the analysis. In the study area there are 255 postal code areas, which are larger 

than the neighborhood-level aggregations of the risk variable, allowing for a more 
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comprehensive control of spatial heterogeneity in the analysis6. The model will therefore 

include spatial fixed effects 𝜇 at the postal code area k. 𝑙𝑛(𝑃𝑖𝑡𝑘) = 𝑎 +  𝛽𝑋𝑖 + 𝜆𝐷𝑖 + 𝜃𝑡 + 𝜇𝑘 + 𝘀𝑖𝑡𝑘    (3) 

The first and main specification used to assess foundation risks relies on the neighborhood risk 

variables provided by Deltares. Using a neighborhood risk index as a dependent variable is 

justified for several reasons. First, the main reason for using this index is that it is the only 

national scale quantitative measure of foundation risks. Additionally, most properties do not 

have foundation quality stated in the advertisements and homeowners rarely provide a 

foundation quality report (Hommes et al., 2023). The assumption here is that due to a lack of 

information, the only way people know the foundation risk is either through online sources, 

own knowledge or through damages that have already occurred and are visible. Because the 

maintenance outside variable is used as a control, the risk coefficients will just capture the 

effects of expected risk and/or the expected unseen foundation damages. This risk variable 

provides an objective and data-driven approach to evaluating the influence of foundation risks, 

thus enhancing the robustness and reliability of the analysis. For these reasons, 𝑅𝑖𝑠𝑘 per 

property (i) is added as a variable7 (based on in which neighborhood the house is) to assess the 

impact of foundation risks on house prices. This leads to the base model:  𝑙𝑛(𝑃𝑖𝑡𝑘) = 𝑎 +  𝛽𝑋𝑖 + 𝜆𝐷𝑖 + 𝜃𝑡 + 𝜇𝑘 + 𝛾𝑅𝑖𝑠𝑘𝑖 + 𝘀𝑖𝑡𝑘   (4) 

Where 𝛾 represents the coefficient for a one standard deviation change in neighborhood risk. 

In addition to the neighborhood risk level other foundation risk indicators are subsequently 

included as interactions. Although two types of risk are investigated (pole rot and differential 

settlement) both models will use the same interactions with the property specific variables; 

foundation probabilities, subsidence rates and soil types. The model with added interactions 

will thus look like: 𝑙𝑛(𝑃𝑖𝑡𝑘) = 𝑎 +  𝛽𝑋𝑖 + 𝜆𝐷𝑖 + 𝜃𝑡 + 𝜇𝑘 + 𝛾𝑅𝑖𝑠𝑘𝑖 +  𝜙𝑍𝑖 + 𝛿(𝑅𝑖𝑠𝑘𝑖  ×  𝑍𝑖  ) + 𝘀𝑖𝑡𝑘    (5) 

In this equation the added term 𝑍𝑖 represents the property risk variable, 𝜙 the coefficient to be 

estimated for the property risk variable and 𝛿 the parameter to be estimated for the interaction 

effect. The other coefficients and terms remain the same as the previous equations.  

 

6
 Sensitivity checks using different spatial fixed effects will be used to investigate the relationships further.  

7
 For easier interpretability of the coefficients, the risk values were standardized. 
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Due to risk values being assigned based on neighborhood aggregated risk, the property-specific 

interactions are necessary to capture more granular effects and provide a more detailed 

understanding of how foundation risks specifically impact individual property prices. 

Unfortunately, these property risk variables can be somewhat correlated with the neighborhood 

risk variables because they form part of the original neighborhood risk calculation (section 

3.2). However, multicollinearity in the regressors does not bias the coefficient estimates, 

although it can decrease the efficiency by increasing the standard errors (Dormann et al., 2013). 

Further specifications (in sections 4.2 and 4.3) will aim to estimate the separate effects of these 

risk indicators to provide a more comprehensive analysis. 

Including these interactions is logical because it acknowledges that while neighborhood risk 

gives a general overview, the specific characteristics of each property can lead to more detailed 

variations in how risk impacts house prices. For instance, two houses in the same neighborhood 

might be located on different soils and have different subsidence rates, which can alter their 

vulnerability to risks like pole rot or differential settlement. By incorporating property-specific 

risk variables and their interactions with neighborhood risk, the model can differentiate 

between these scenarios, offering a more precise estimation of the risk impacts. Additionally, 

this approach helps to mitigate potential aggregation bias that could occur if only 

neighborhood-level risks were considered. Aggregation bias can obscure the true relationship 

between risk and property prices by averaging out individual differences. By using property-

specific variables, the model ensures that these differences are accounted for, leading to more 

accurate and reliable results. Furthermore, foundation risks are a result of a combination of 

many different drivers that all vary in impact and patterns. To accustom for these complexities, 

it is reasonable to include a multitude of risk indicators.  

The foundation variables range from 0 to 1 and give a probabilistic indication whether a house 

has wooden, shallow, or concrete foundations based on its age, region, and soil type. While 

these foundation probabilities are not certain, it is the best indicator available. Houses with 

wooden foundations have a much higher pole rot risk while houses on shallow foundations are 

at risk for differential settlement. If the neighborhood risk increases with one unit and a house 

is highly likely (probability = 1) on wooden/shallow foundations it can be expected that this 

will negatively impact the price compared to houses in neighborhoods with lower risks.  
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Although one might argue predicted subsidence cannot be related to house prices, Yoo and 

Perrings (2016) found expected subsidence has a similar effect on price as historical 

subsidence. The downside of this is that when using predicted subsidence as a regressor it will 

likely also capture past subsidence and damages to houses. The subsidence variable used in the 

model will be the expected median8 subsidence per property in millimeter per year. While 

regressing with the continuous subsidence variable, a dummy will also be created to inspect 

the effect of being above a certain subsidence damage class. The threshold value of 3 

millimeter/year was chosen based on the guidelines compiled by the Organisation for 

Independent Foundation Research that state subsidence under 3 millimeter/year is negligible 

and subsidence above 4 millimeter/year causes large damages (KCAF, 2012). Important to note 

here is that subsidence can cause more than just foundation damages, as it also can influence 

surrounding structural damages (e.g. sidewalks), although these effects are not as important for 

prices (Willemsen, Kok & Kuik, 2020). 

3.5 Assumptions and Limitations 

To address any issues of correlated errors within neighborhoods, the standard errors are 

clustered at the neighborhood level. This is done to account for the fact that observations within 

the same neighborhood are not independent and have the same neighborhood risk levels, 

leading to underestimation of standard errors. Additionally, for models where neighborhood 

risk is not used, the standard errors are clustered robustly to account for heteroscedasticity 

complications. This will ensure the differences in the variance of the errors will be taken into 

account (Hayes & Cai, 2007). Normality issues will be invalid due to the large sample size and 

the central limit theorem (Rosenblatt, 1995). Multicollinearity among control variables is less 

concerning when the primary focus of the analysis is on the risk indicators themselves, not on 

the precise coefficients of the control variables. Therefore, multicollinearity does not reduce or 

impact the predictive power of the whole model (Xiao & Xiao, 2017). A further exploration 

into the variables using regression combinations (Appendix F) showed there were no critical 

multicollinearity problems (VIF > 5) (Hair, Ringle & Sarstedt, 2011). 

While there is potential for reverse causality in the model, several counterarguments address 

these concerns. More affluent neighborhoods might attract more public or private investment 

 

8
 The median subsidence was used to account for the fact that this is a better representative of expected subsidence 

than the mean value which could be distorted by a small part of the house being on a very low or high subsidence 

grid cell.  
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in foundation assessments and damage mitigation, potentially reducing foundation risks. This 

is addressed by including spatial fixed effects, which capture unobserved, time-invariant spatial 

attributes, thus preventing bias in the estimated effects. House prices do not influence soils or 

subsidence rates because these are considered natural phenomena (Yoo & Perrings, 2017). 

Similarly, house prices do not affect the probability of having a certain foundation type, as 

these probabilities are determined by construction years, regions, and soil types. Therefore, the 

way neighborhood risk was calculated is based entirely on natural phenomena and historical 

construction practices, which are exogenous to current house prices. Even if higher house 

prices could lead to more investment in maintenance and renovations, thereby improving 

foundation quality and reducing risks, these improvements are not reflected in the risk index 

used in this model. Therefore, all risk variables are exogenous to house prices, ensuring the 

validity of the risk assessment in the regression analysis.  

Another possible issue for the model is that the risk variable does not consider renovations and 

mitigation measures. If more affluent households and neighborhoods gather more information 

and invest more in mitigating foundation risks, these areas will have higher prices and lower 

risks compared to less affluent areas where such investments are not made. However, since 

these risks are constructed exogenously, this could potentially lead to an overestimation of the 

true foundation risk in affluent areas and an underestimation in less affluent areas, potentially 

biasing the predicted relationship between house prices and foundation risks. Although this 

might seem like a problem, foundation risks have only begun to get attention since 2018 (RLI, 

2024), indicating that most homeowners have not inspected or repaired their foundations. 

Furthermore, renovations typically occur only after foundations have begun causing damage, 

and many risks have yet to result in damage due to the long-term nature of pole rot and 

differential settlement (RLI, 2024; Kok & Angelova, 2021).  
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3.6 Difference-in-differences  

As further analysis and to address endogeneity issues, a temporal difference-in-differences 

(DiD) strategy has been developed. Before the sixties, a lack of regulations and advanced 

techniques meant lot of houses were being built on shallow and wooden foundations, especially 

on risky soils like clay and peat (section 2.1). These properties are now at higher risk than 

similar houses built on the same soil types after 1970, when foundation regulations and 

techniques improved, and all houses were built on concrete piles. Consequently, houses on 

risky soils can be considered the treatment group, and houses on safe soils can be the control 

group. The analysis thus compares price differentials between soil types from before 1970 and 

after 1970. The underlying assumption of this regression is that while various housing 

improvements occurred around this time (RLI, 2024), the only qualitative housing differences 

between houses on different soil types can be attributed to changes in foundation types.  

First, 𝑈𝑛𝑠𝑎𝑓𝑒𝑆𝑜𝑖𝑙 is defined as a dummy that equals 1 for houses built on risky soils (clay 

clay/peat and peat) and 0 otherwise (sandy soil). Post1970 is a dummy variable indicating with 

a 1 if a house was built after 1970 and 0 if otherwise.  𝑙𝑛(𝑃𝑖𝑡𝑘) = 𝑎 +  𝛽𝑋𝑖 + 𝜃𝑡 + 𝜇𝑘 + 𝜂𝑈𝑛𝑠𝑎𝑓𝑒𝑆𝑜𝑖𝑙𝑖 + 𝜅𝑃𝑜𝑠𝑡1970𝑖  +  𝜒(𝑈𝑛𝑠𝑎𝑓𝑒𝑆𝑜𝑖𝑙𝑖 ×                               𝑃𝑜𝑠𝑡1970𝑖) +  𝘀𝑖𝑡𝑘         (6) 

The coefficients to be estimated are similar to that of the previous equation (5) but now include 

treatment, and a time period dummy and excludes construction year dummies due to 

multicollinearity issues. The coefficients 𝜂, 𝜅, and 𝜒 estimate the impacts of the treatment and 

time periods. Specifically, η represents the average difference in prices between houses on 

risky and safe soil, κ reflects the effect of houses built after 1970 on price irrespective of soil 

type. The interaction term χ measures the additional impact on house prices for houses built on 

risky soils and after 1970. Thus, χ directly measures how much the change in foundation 

practices affected the price of properties on unsafe soils compared to safe soils post-1970, 

providing a clear indication of whether these changes effectively mitigated risks associated 

with unsafe soils or not.  

An important requirement for the DiD strategy to work is the parallel trends assumption (Ryan 

et al., 2019). It is possible to see the trends for houses on different soils in Figure X. To test for 

the parallel trends assumption, the method developed by Riveros-Gavilanes (2023) was 
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adapted. As the authors note, it is necessary to include a reference period (T – 1) before the 

time period dummy. The time period dummies are a function of time that are used to identify 

pre and post periods relative to the reference decade, which is a necessary condition for this 

specification to work (Riveros-Gavilanes, 2023). Additionally, the direct effects of unsafe soils 

and time periods need to be omitted for the model to work. Thus, Pre1960 is a dummy variable 

indicating if a house was built before 1960 and 0 otherwise. Houses built between 1960 and 

1970 serve as the reference group for the testing of the parallel trends. The equation therefore 

becomes: 𝑙𝑛(𝑃𝑖𝑡𝑘) =  𝛽𝑋𝑖 + 𝜃𝑡 + 𝜇𝑘  + 𝛼(𝑈𝑛𝑠𝑎𝑓𝑒𝑆𝑜𝑖𝑙𝑖 × 𝑃𝑟𝑒1960𝑖) + 𝜏(𝑈𝑛𝑠𝑎𝑓𝑒𝑆𝑜𝑖𝑙𝑖  ×𝑃𝑜𝑠𝑡1970𝑖) + 𝘀𝑖𝑡𝑘  

where the coefficients 𝛽, 𝜃, and 𝜇 are related to the property (i) attributes, time (t) and postal 

code (k) fixed effects. These covariates need to be included because they can influence the 

potential trends (Roth et al., 2023) The coefficient 𝛼 is the coefficients of interest, which tests 

for the slopes between houses on unsafe and safe soils in the pre-intervention period relative to 

the reference decade (1960-1970). The parameter 𝜏 estimates the generic average treatment 

effect on the treated (unsafe soils) after the intervention where the 𝑃𝑜𝑠𝑡1970𝑖  dummy 

identifies the post-treatment periods. The equation aims to test whether there are differential 

slopes in the treatment and control groups in the pre-1960 period. The null hypothesis (H0: 𝛼 

= 0) represents the absence of different slopes between the groups in the pre-1960 period and 

signals parallel trends. The alternative (HA: 𝛼 ≠ 0) implies the existence of differential pre-

trends before the treatment (better foundation techniques) came into effect. This would indicate 

that houses constructed on unsafe soils have different price trends over time before 1960 

compared to houses on sandy soils.  
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Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Notes: We cluster standard errors at the neighborhood level. 

4. Results 

4.1 Risk Interactions 

The results in Table 2 provide a detailed analysis of how two types of foundation risks and 

their interactions with property-specific characteristics influences log house prices. 

Table 2: Risks and Interactions on Log Price 
  Pole Rot   Differential Settlement  

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

VARIABLES           

           

Risk (1SD) × Wooden 

Foundations 

-0.007* 

(0.0041) 

    0.000 

(0.0062) 

    

           

Risk (1 SD) × Shallow 

Foundations 

 -0.004 

(0.0077) 

    0.015 

(0.0149) 

   

           

Risk (1 SD) × Subsidence 

(in mm/year) 

  0.000 

(0.0005) 

    -0.000 

(0.0003) 

  

           

Risk (1 SD) if Subsidence 

(> 3 mm/year) 

   -0.002 

(0.0059) 

    -0.003 

(0.0039) 

 

           

Risk (1 SD) × Clay Soil 

  

    -0.002 

(0.0088) 

    -0.007 

(0.0077) 

           

Risk (1 SD) × Clay/Peat 

Soil 

    -0.002 

(0.0041) 

    -0.001 

(0.0020) 

            

Risk (1 SD)× Peat Soil      0.000     -0.008** 

     (0.0039)     (0.0036) 

           

Wooden Foundations 0.001     -0.004     

 (0.0086)     (0.0076)     

Shallow Foundations  -0.008     -0.011    

  (0.0101)     (0.0115)    

Subsidence (in mm/year)   -0.002***     -0.002***   

   (0.0006)     (0.0006)   

Subsidence (> 3 mm/year)    -0.015**     -0.013**  

    (0.0059)     (0.0059)  

           

Clay Soil     0.018***     0.017*** 

     (0.0072)     (0.0063) 

Clay/Peat Soil     0.001     0.001 

     (0.0044)     (0.0044) 

Peat Soil      -0.009     -0.006 

     (0.0086)     (0.0079) 

Risk (1 SD) 0.005 0.002 0.001 0.002 0.003 -0.005 -0.005 -0.000 -0.002 -0.003 

 (0.0044) (0.0041) (0.0043) (0.0042) (0.0046) (0.0041) (0.0038) (0.0038) (0.0056) (0.0040) 

           

Constant 11.559*** 11.561*** 11.562*** 11.562*** 11.562*** 11.567*** 11.566*** 11.569*** 11.567*** 11.567*** 

 (0.0461) (0.0458) (0.0456) (0.0457) (0.0454) (0.0444) (0.0442) (0.0445) (0.0443) (0.0445) 

           

Year FE (21) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Neighborhood FE (987) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Property Controls (11) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Construction Year 

Dummies (11) 

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

           

Observations 456,136 456,136 456,136 456,136 456,136 456,136 456,136 456,136 456,136 456,136 

R-squared 0.885 0.885 0.885 0.885 0.885 0.885 0.885 0.885 0.885 0.885 
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The main hypothesis that risks do not significantly influence house prices because buyers 

generally lack detailed knowledge about foundation conditions is largely supported by the 

findings. The variables of interest are the coefficients of the interaction terms between 

neighborhood risk and the property specific variables (foundation probabilities, subsidence, 

and soil types). The specifications for the regression are all the same and are based on equation 

(5). The high R-squared of the models is mainly caused by the inclusion of the controls, 

construction year dummies and transaction year and postal code fixed effects as shown by 

Table 5 and 6 in the robustness analysis and Table C1 in Appendix C. As for the constant, the 

intercept 𝑎 represents the log house price when all regressors are set to zero. The constant is 

relatively stable across all specifications in all further regressions.  

In general, most risk interacted coefficients in Table 2 show insignificant effects, suggesting 

the hypothesis that risks are not well known, and buyers do not take them into account when 

acquiring a house, is confirmed. The interaction estimates are not suitable for drawing 

inferential conclusions, as they do not achieve statistical significance. However, there are two 

exceptions, the first being the coefficient for the interaction term between pole rot risk and 

wooden foundations (-0.007) in column (1), which is significant at the 10% level. This 

coefficient indicates that for houses suspected to be on wooden foundations (probability of 

100%), the price is estimated to decrease by approximately 0.7% for each standard deviation 

increase in pole rot risk. This decrease is over and above the general effect of pole rot risk in 

the neighborhood captured by 𝛾 and the effect of having wooden foundations captured by 𝜙. 

The interaction term specifically captures the additional negative impact on house prices when 

both conditions (higher pole rot risk and wooden foundations) are present. This was somewhat 

expected from the literature (section 2.1 and 3.2), as houses on wooden foundations are the 

only type of foundations at risk for pole rot. Despite the significant result, it is complicated to 

actually infer if this effect is correct. As foundation probabilities are dependent on soil types, 

construction years and municipality, it is likely that this variable is a distorted proxy and does 

not show the actual impact wooden foundations have. A further explanation and analysis of the 

foundation probabilities will be done in section 4.3.  

The other significant interaction coefficient (-0.008) in column (10) indicates that for houses 

on peat soils, each additional standard deviation increase in differential settlement risk is 

associated with an approximately 0.8% decrease in house prices (significant at the 5% level). 

This is additional to the general effect of neighborhood differential settlement risk captured by 
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𝛾 and the effect of being on peat soil compared to sandy soils captured by 𝜙. This finding 

contrasts with the literature, which suggests that clay soils are most vulnerable to differential 

settlement due to their shrink-swell behavior. It is interesting that while being on peat soil 

doesn’t seem to directly affect prices (no statistical significance for this coefficient) in 

combination with differential settlement it does appear to have an effect. 

The direct effect of subsidence in millimeter/year, captured by 𝜙 in the model, is consistently 

negative (-0.002) and highly statistically significant, indicating that a one mm per year increase 

in subsidence is associated with ~0.2% lower house prices. For properties experiencing 

subsidence greater than 3 millimeter/year, the coefficient (𝜙) is also statistically significant and 

negative, with the model suggesting that there is a small (approximately -1.5% and -1.3%) but 

economically significant impact of severe subsidence on house prices. Table C2 in Appendix 

C shows that when interacting different subsidence categories and risk only the houses with 

subsidence above 4 millimeter/year have statistically significant coefficients that implicate 

these houses have around ~1.6% lower prices compared to the reference category (houses with 

subsidence between 0 and 2). This means the threshold coefficient 𝜙 is probably capturing the 

effects of subsidence that occur above 4 millimeter/year9.  

While the interaction terms for clay/peat and peat soils (𝛿) do not show significant impacts, the 

direct effects of soil types (𝜙) reveal that houses on clay soils seem to have a positive and 

significant higher price. The coefficient for clay soil is ~0.017 at the 1% significance level, 

indicating an economically relevant relationship between clay soil and property prices. This 

could be partially explained by the fact that clay soils are most common in highly attractive 

and expensive cities like Haarlem, Amsterdam, and Rotterdam (Table B3). Although postal 

code fixed effects are used to control for spatial patterns, the high concentration of clay soil in 

these desirable urban areas might still contribute to the observed positive price effect, reflecting 

the premium associated with properties in these locations.  

 

 

 

9
 The statistically significant interaction coefficients of the medium and large subsidence with pole rot risk 

categories in Table C2 should be interpreted with caution due to the small number of observations within these 

categories and their concentration in three municipalities (Table B1 in Appendix B). 
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The direct effects of risk scores (𝛾) on house prices are insignificant for all modelled 

interactions and show positive associations with pole rot risk and prices while differential 

settlement seems to indicate a negative effect on price. The lack of statistical significance 

suggests that foundation risks at the neighborhood level do not noticeably impact house prices, 

aligning with the initial hypothesis.  

At the same time, the regression results in Table C7 (Appendix C) indicate that the coefficients 

for pole rot risk vary, showing both positive and negative influences on house prices. The 

additional regression of risk categories on prices was conducted to explore potential nonlinear 

relationships. Interestingly, houses with pole rot risk scores between 2 and 3 are priced 

significantly (at the 5% level) higher (~2.4%) than those in the reference category with scores 

of 0 to 2, while other risk categories show insignificant and fluctuating results. These findings 

highlight the challenges in inferring the true effects of risk on prices when using categorical 

dummies. Older houses, often located in city centers like Amsterdam, Haarlem, and Zaanstad, 

feature historical amenities and vintage elements. These houses typically have higher property 

values but are more susceptible to pole rot (section 3.2). The model does attempt to control for 

these patterns by using distance to the center control and using spatial fixed effects at the postal 

code level. However, because the model uses dummy variables to indicate which category of 

risk scores a house is in, the price effect being measured in this categorical regression is likely 

due to the spatial pattern of risk instead of an actual effect.  

In contrast, differential settlement risk shows a consistent negative (but mostly insignificant) 

relationship with house prices. Only houses with risk levels between 3 and 5 exhibit statistically 

significant lower prices, approximately -3.5%, compared to those with minimal risk. possibly 

due to observations with higher differential settlement risk being concentrated in outer parts of 

Amsterdam and Rotterdam (Figure A2) while being most prominent in Zoetermeer and 

Zaanstad (Table B1).  
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4.2 Soils and Subsidence 

To investigate the results of the main regression output even further, the following sections 

discuss the direct effects of property specific risk variables and a robustness check for the 

controls and fixed effects. The analysis of the direct impact of different risk driving variables 

adds context and nuance to the main regression while the addition of controls and varying use 

of fixed effects and thresholds, examines how the risk indicators change under different 

specifications. 

Soil types and subsidence rates were assigned based on a detailed grid layer, with each cell 

measuring 100 x 100 meters, suggesting that properties within proximity share similar soil 

characteristics and subsidence rates. This spatial resolution introduces a granularity that 

significantly influences the effectiveness of fixed effect models at different geographic scales. 

In this context, neighborhood fixed effects, which control for unobserved heterogeneities 

within small areas (median size of neighborhoods10 is 0.33 km²) might not be capturing the 

effects of soils, subsidence, and foundation probabilities. Properties within the same 

neighborhood are likely to exhibit minimal variation in soil types due to the precise method of 

soil type assignment. Consequently, this could diminish the observed impact of foundation 

types on property prices, as the model adjusts for these highly localized factors. Essentially, 

the neighborhood fixed effects could be too restrictive, leaving little room for foundation types 

to exhibit a substantial influence on property prices within these small areas. The diversity in 

soil types and subsidence rates across a postal code likely introduces sufficient variability, 

which the fixed effects model can utilize to predict the impact more robustly on property prices.  

Therefore, the following tables present the direct effects of the risk drivers with postal code 

fixed effects while Table C3, Table C4 and Table C5 show the same regressions but with 

neighborhood fixed effects. The neighborhood fixed effect specification for subsidence and 

soil types demonstrates the significance of the coefficients remains the same and subsidence 

coefficients remain very similar. The only change is that the effect of clay and peat soils is a 

little lower (0.013 and -0.004). The other difference is that the neighborhood fixed effects 

model has a slightly higher R-squared, indicating higher predictive power. 

 

 

10
 Table B4 in Appendix B summarizes the area statistics for neighborhoods. 
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Table 3: Subsidence and Soil Types on Log Price (Postal code FE) 
 (1) (2) (3) (4) (5) (6) 

VARIABLES       

       

Subsidence (mm/year) -0.001***      

 (0.0002)      

Subsidence (> 3 

mm/year) 

 -0.015*** 

(0.0058) 

    

       

Sandy Soil   -0.003***    

   (0.0009)    

Clay Soil    0.013***   

    (0.0013)   

Clay/Peat Soil     -0.000  

     (0.0009)  

Peat Soil      -0.004*** 

      (0.0014) 

       

Constant 10.915*** 10.915*** 10.918*** 10.915*** 10.915*** 10.915*** 

 (0.0491) (0.0490) (0.0492) (0.0493) (0.0491) (0.0490) 

       
Year FE (21) Yes Yes Yes Yes Yes Yes 
Postal code FE (255) Yes Yes Yes Yes Yes Yes 
Property Controls (11) Yes Yes Yes Yes Yes Yes 
Construction Year 

Dummies (11) 
Yes Yes Yes Yes Yes Yes 

       

Observations 456,136 456,136 456,136 456,136 456,136 456,136 

R-squared 0.894 0.894 0.894 0.894 0.894 0.894 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

The coefficients for subsidence in millimeter/year and subsidence above the 3 millimeter/year 

threshold are similar to the ones found in the main regression. Both are negative and highly 

significant, indicating that each additional millimeter of subsidence per year significantly 

lowers house prices by ~0.1%, and subsidence above 3 millimeter/year is associated with 

~1.5% lower prices. This suggests that buyers do slightly recognize the impact of subsidence 

on property values.  

In the main regression, sandy soils serve as the reference category for soils. Adding the 

coefficient of sandy soils (-0.003) to the clay soil coefficient of 0.013 results in a similar 

positive effect for clay soils found in Table 2 (-0.0018), providing further evidence that clay 

soils are positively related to house prices. The effects of clay/peat soils are around 0 and 

insignificant in both the main regression and this specification. For peat soils, the combined 

effect of the sandy soil and peat soil coefficients is similar to the main regression's estimate of 

-0.009 and -0.006 (Table 2). When directly analyzing the influence of peat soil on prices the 

coefficient is statistically significant while in Table 2 they are not (likely due to larger standard 
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errors). At the same time, the coefficient of peat interacted with differential settlement risk is 

positive and statistically significant. These results point to a negative relationship between peat 

soils and prices, especially in neighborhoods with higher differential subsidence risks (and 

likely more subsidence). The discrepancy between the coefficient’s significance highlights the 

impact of model complexity on the precision and interpretability of the estimated coefficients. 

The overall significance of the direct soil coefficients (excluding clay/peat soils) does support 

the argument that soil types are related to house prices and needs further research attention. 

Important to not here is that subsidence is negatively correlated with clay soils and positively 

with peat soils (Appendix E), possibly indicating subsidence is affecting house prices through 

soil types. 

4.3 Foundations  

The assignment of foundation probabilities is determined by several factors: municipality, 

construction year, and soil type. The effects of municipality variations are controlled through 

fixed effects, while differences due to construction years are partly adjusted via construction 

year dummies. Table C4 shows the same model but without construction year dummies and 

stronger coefficients, indicating age is indeed correlated with foundation probabilities. This 

control strategy ostensibly isolates soil type as the main source of variation in foundation 

probabilities within fixed regions. This correlation is however not perfect since the soil type 

map consisted of four soil types while the foundation probability tables (Appendix F) only 

identified three soil types. Nevertheless, this relationship highlights that the results in Table 4 

may not fully capture the actual effect of foundation types on property prices but rather a proxy 

effect for soil types.  
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Table 4: Foundation Probabilities on Log Price (Postal code FE) 

 (1) (2) (3) 
VARIABLES    

    

Wooden Foundations -0.004***   

 (0.0015)   

Shallow Foundations  -0.008***  

  (0.0024)  

Concrete Foundations   0.005*** 

   (0.0013) 

    

Constant 10.915*** 10.915*** 10.914*** 

 (0.0491) (0.0491) (0.0491) 

    

Year FE (21) Yes Yes Yes 

Neighborhood FE (987) No No No 

Postal code FE (255) Yes Yes Yes 

Property Controls (11) Yes Yes Yes 

Construction Year Dummies (11) Yes Yes Yes 

    

Observations 456,136 456,136 456,136 

R-squared 0.894 0.894 0.894 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Notes: Robust standard errors are used. 

Table 4 shows that the foundation probabilities have significant effects in line with the 

literature. The effect of wooden and shallow foundations on prices seems to be negative and 

statistically significant while the effect of concrete foundations is positive. At the same time, 

when using neighborhood fixed effects, only the shallow foundations effect remains significant 

and around the same strength (-0.007), indicating this is a robust relationship over various 

spatial scales. The results of the main regression (Table 2) show a significant relationship 

between pole rot risk and prices when interacted with wooden foundations and no strong or 

significant relationship for wooden foundations directly. The coefficient for wooden 

foundations, when interacting with differential settlement is similar to the one in the Table 4, 

albeit insignificant. This all suggest that only for houses on wooden foundations a higher pole 

rot risk score influences prices. However, the effect of foundation probabilities (also when 

interacted) is likely just a distorted proxy for soil types, thus the coefficients for foundation 

probabilities do not prove any real effect of foundation quality on price.  
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4.4 Control variables and fixed effects 

The Tables 5 and 6 present the addition of controls combined with neighborhood risk levels to 

show how the predictive power of the model increases.  

Table 5: Pole Rot Risk on Log Price (with added controls) 

 (1) (2) (3) (4) (5) 

VARIABLES      

      

Pole Rot Risk (1 SD) 0.096*** 0.083*** 0.048*** 0.048*** 0.002 

 (0.0125) (0.0096) (0.0088) (0.0086) (0.0041) 

      

Constant 12.425*** 11.024*** 11.991*** 11.162*** 11.561*** 

 (0.0163) (0.0457) (0.0691) (0.0482) (0.0458) 

      

Year FE (21) No No No Yes Yes 

Postal code FE (255) No No No No Yes 

Property Controls (11) No Yes Yes Yes Yes 

Construction Year Dummies (11) No No Yes Yes Yes 

      

Observations 456,136 456,136 456,136 456,136 456,136 

R-squared 0.026 0.445 0.494 0.710 0.885 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Notes: We cluster standard errors at the neighborhood level. 

Table 5 presents a comprehensive view of the impact of various controls and fixed effects on 

the relationship between neighborhood foundation risks and property values. In the first column 

(1), the coefficient for pole rot is positive and highly significant, indicating that higher pole rot 

risks are initially associated with increased house prices. This finding is counterintuitive, as 

one would expect higher foundation risks to negatively impact property values. However, the 

R-squared value in this model is relatively low (0.026), suggesting that risk alone only explains 

a small fraction of the variance in house prices and the coefficient is probably capturing omitted 

variables. A limitation of this model is that the adjusted R-squared could not be used due to the 

use of clustered standard errors at the neighborhood level, therefore the model does not adjust 

for complexity and the number of predictors.  

When property controls are added in column (2), the coefficient for pole rot risk decreases 

slightly but remains significant. The R-squared jumps to 0.445, indicating that property 

characteristics like size, rooms, and maintenance significantly explain the variance in house 

prices. In column (3), including construction year dummies further reduces the risk coefficient 

by almost half while maintaining its significance, but the R-squared increases only slightly to 

0.494 This provides evidence that the age effect of houses is significantly correlated with pole 

rot risk, capturing a substantial part of the risk's impact on prices. The small increase in R-
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squared indicates that while construction year is important, much of the price variation is 

already explained by the other property controls, and the age effect is not adding a substantial 

new dimension of explanatory power.  

Adding year fixed effects in column (4) significantly increases the R-squared to 0.710, 

indicating that temporal factors (between 2000 and 2021), such as market trends and economic 

conditions, play a critical role in explaining house prices. In column (5), incorporating spatial 

fixed effects results in the pole rot risk coefficient dropping to zero and becoming insignificant, 

with the R-squared reaching 0.885. This suggests that spatial fixed effects capture most of the 

previously observed relationship between risk and house prices, indicating that the risk 

coefficient might have been proxying for other spatially correlated attributes like neighborhood 

desirability and local amenities, rather than having a direct effect on foundation risks.  

Table 6: Differential Settlement Risk on Log Price (with added controls) 

 (1) (2) (3) (4) (5) 

VARIABLES      

      

Differential Settlement Risk(1 SD)  0.007 0.006 0.002 0.003 -0.005 

 (0.0092) (0.0064) (0.0049) (0.0045) (0.0037) 

      

Constant 12.425*** 11.062*** 12.024*** 11.194*** 11.566*** 

 (0.0170) (0.0470) (0.0668) (0.0486) (0.0442) 

      

Year FE (21) No No No Yes Yes 

Postal code FE (255) No No No No Yes 

Property Controls (11) No Yes Yes Yes Yes 

Construction Year Dummies (11) No No Yes Yes Yes 

      

Observations 456,136 456,136 456,136 456,136 456,136 

R-squared 0.000 0.428 0.489 0.705 0.885 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Notes: We cluster standard errors at the neighborhood level. 

Table 6 illustrates the effects of various controls and fixed effects on the relationship between 

differential settlement risk and property values. The R-squared initially shows that differential 

settlement risk alone explains none of the variance in house prices, with this trend continuing 

similar to the previous pole rot table. Regarding the coefficients of differential settlement risk, 

they start at 0.007 in column (1) and decrease to 0.006 upon adding property controls in column 

(2), further drop to 0.002 with construction year dummies in column (3), and slightly rise to 

0.003 with year fixed effects in column (4). With the inclusion of postal code fixed effects in 

column (5), the coefficient turns negative (-0.005). This trend suggests that differential 

settlement risk might negatively impact house prices when thoroughly controlling for other 
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(spatial) factors, though all coefficients are statistically insignificant, indicating caution in 

interpreting the effects. 

 A comparison between this outcome and the coefficients in Table 5 shows that differential 

settlement risk does not seem to be correlated with variables and spatiotemporal patterns that 

influence house prices. The pole rot risk exhibited a more substantial and consistent association 

with house prices until spatial fixed effects were included, which absorbed the effect. This 

indicates that neither risk variables have a significant direct impact on house prices when 

accounting for controls and spatiotemporal patterns.  

Additional specifications of the last column (5) but with varying spatial fixed effects 

(neighborhood and municipality) in Table C6 show that the effects of risks are insignificant 

except for when using municipality fixed effects (pole rot becomes 0.023 at the 1% level and 

differential settlement 0.011 at the 10% level). However, municipality fixed effects do not 

account for the finer spatial heterogeneity within municipalities, which can lead to spatial 

correlation in the residuals. This suggests that while municipality-level fixed effects capture 

broader regional trends, they probably overlook more localized influences on house prices that 

are correlated with risk as the postal code fixed effects columns show.  
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4.5 Difference-in-differences 

Table 7 presents the outcome of the Difference-in-Differences (DiD) regression (equation 6). 

The Table D1, Figure D1 and Figure D2 in Appendix D present evidence the parallel trend 

assumption holds, and the null hypothesis of no differential trends is not rejected. Also, this 

regression shows that pre-1960 the houses on unsafe soils had lower prices than those on sandy 

soils while post-1970 the houses on unsafe soils were priced higher, indicating some 

relationship between soils, foundation changes around that time and prices.  

Table 7: Unsafe Soil and Post-1970 dummies on Log Price 

 (1) (2) 

VARIABLES Neighborhood 

FE 

Postal code 

FE 

   

Unsafe Soil 0.001 -0.000 

 (0.0012) (0.0059) 

Post-1970 0.083*** 0.079*** 

 (0.0014) (0.0074) 

Unsafe Soil × Post-1970 0.006*** 0.008 

 (0.0015) (0.0072) 

   

Constant 10.668*** 11.370*** 

 (0.0084) (0.0221) 

   

Year FE (21) Yes Yes 

Neighborhood FE (987) Yes No 

Postal code FE (255) No Yes 

Property Controls (11) Yes Yes 

Construction Year Dummies (11) No No 

   

Observations 456,136 456,136 

R-squared 0.891 0.880 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

The first coefficient (η) represents the price differential between houses built on clay or peat 

soils compared to sandy soils for properties independent of construction year in both 

specifications. This finding suggests that there is no significant difference between sandy soils 

and clay, clay/peat and peat soils (combined). However, seeing that soil types are related to 

prices differently (i.e. clay positively and peat negatively) it could be these effects cancel each 

other out. The coefficient for houses constructed after 1970 (κ) indicates newer houses are 

bought at higher prices (about 8% on average) with statistical significance at the 1% level. The 

coefficient of interest (χ) is however that of the interaction, showing a small effect on price 

(~0.8%) suggesting that houses on unsafe soils are relatively more valued post-1970 above and 

beyond the general time trend and any initial differences between the soil types. The coefficient 
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suggests that regulatory and technical foundation improvements have mitigated some of the 

risks associated with foundations and home buyers have recognized this.  

Despite this significant effect, as explained in the previous section, soil types were assigned 

based on a 100m x 100m grid cell, indicating spatial variation in soil is only present between 

houses if the fixed effect region encompasses at least one or more grid cells. Therefore, the 

difference-in-difference regression was also done using postal code fixed effects for 

robustness. Even though the R-squared for the neighborhood fixed effects specification (1) is 

higher it is important to be careful with inference due to the forementioned limitations of using 

neighborhood fixed effects.  

The postal code fixed effects column (2) demonstrates that while the interaction coefficient 

direction and strength is similar, it is not statistically significant. This indicates that when 

controlling for more different soil types per fixed effects region, the effect of foundation 

regulations and techniques introduced around 1970 do not seem to have had an impact on 

property prices. Due to this model using soil types as a proxy for foundation treatment and 

subsidence being correlated with soils it could also be possible that, seeing the significant 

impacts of soil types on prices, the results of this regression are a result of these soil and 

subsidence effects rather than the changes in foundation types. The varying results and model 

construction does not provide a definitive answer on the question whether foundation risks play 

a role in home buyer decisions. Although the results suggest a negative impact on prices, the 

limitations11of the model and the insignificance of the coefficients in the second specification 

make it difficult to assert a definitive relationship between improved foundations and property 

values. 

  

 

11 Limitations of the model are among others; use of aggregated soil types for unsafe soil, the shift in regulation 

and foundation techniques not occurring specifically around 1970 but as a more gradual process between 1950 

and 1970 (staggered DiD should be used in future research) and the simplified parallel trends controls.  
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5. Discussion 

5.1 Key Findings and Academic Context  

In contextualizing the results of this study within the broader academic literature, it is important 

to note the parallels and divergences with prior research. The study by Hommes et al. (2023) 

represents one of the few existing investigations into the relationship between foundation risks 

and property prices in the Netherlands, identifying a significant price decrement of 12% for 

houses with compromised foundations. This effect was observed in a limited dataset where 

foundation quality was explicitly listed. In contrast, the more comprehensive analysis of 

approximately 460,000 transactions in ten Dutch municipalities in this study has indicated that 

foundation risks are not consistently reflected in market prices. This analysis includes both 

regression models with interactions among neighborhood risk levels and foundation risk 

drivers, as well as difference-in-differences regressions. This discrepancy indicates the 

variability in how foundation risks are capitalized into property values, suggesting that the 

broader market may not always recognize or react to these risks, particularly in the majority of 

settings where specific foundation details are not transparently disclosed. 

Among the findings, two exceptions were noted regarding the negative price effects on houses 

with specific foundation risks, with caution needed in interpreting these results due to potential 

distortions in the variables used. First, houses on peat soils in neighborhoods with higher 

differential settlement risks displayed a statistically significant negative relationship of around 

0.8% in property values, translating to an average depreciation of €2432 on properties valued 

at €304,048 in the sample. Considering the substantial average repair costs ranging from 

€50,000 to €100,000, these findings suggest a mispricing of foundation risks in the market, 

providing evidence that these risks are not fully accounted for in property valuations. 

Second, the interaction between pole rot risk and wooden foundations showed a 0.7% decrease 

per standard deviation increase in pole rot risk. However, this latter finding should be 

approached with caution. Despite the significance of the results, the actual impact of wooden 

foundations on prices is complex to ascertain. The probabilities of foundation types being 

influenced by soil types, construction years, and municipalities make foundation probabilities 

a likely distorted proxy that does not accurately reflect the true impact on prices. This 

complexity underscores the importance of using nuanced approaches to understand how 
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specific foundation risks interact with other environmental and structural factors in influencing 

property values. 

The results of the direct regressions of risk drivers showed that properties on clay soils 

command a premium of around 1.7% relative to those on sandy soils while peat soils are also 

associated with lower prices (~0.7%) unrelated to neighborhood risks. Additionally, the 

difference-in-difference regressions highlight price variations between houses on sandy soils 

and those on other soil types. The outcome of the difference-in-difference regression 

necessitates further exploration to check if the significant effects are caused by an actual change 

in foundations or the impact of different soil types and spatial patterns on prices. Summarizing, 

these results do not only enhance the understanding of how soil factors can drive economic 

outcomes in housing but also underscore the importance of incorporating such variables in risk 

assessments and mitigation strategies. The consistent effects of different soil types on property 

prices signal a critical area for further exploration, particularly given the sparse research 

landscape surrounding the interplay between soil conditions, subsidence, foundation stability, 

and housing market dynamics. 

The direct risk regressions further indicate subsidence is associated with negative prices, and 

that houses expected to experience subsidence rates above 4 millimeter/year are sold at prices 

approximately 1.5% lower than those with less subsidence. These findings suggest that buyers 

recognize the risks associated with subsidence, or that damages have already occurred, thus 

depreciating home values. These effects are smaller than those found in previous studies by 

Willemsen, Kok, and Kuik (2020) and Yoo and Perring (2017), who reported that uniform 

subsidence impacts prices by -7% and -9.9%, respectively. However, Willemsen, Kok, and 

Kuik also observed that differential subsidence has a milder effect of around -2%, similar to 

the findings of this study. Therefore, the consistent negative impact of (future) subsidence 

aligns with expectations set by previous research. 
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5.2 Limitations and Further Research 

This research provides important insights, showing that risks in foundations are not accounted 

for in property prices. However, it is crucial to acknowledge certain limitations and offer 

guidance to researchers, policymakers, and market participants. 

Firstly, the primary objective of the research was to demonstrate that risk does not influence 

housing prices. However, proving the absence of an effect poses inherent challenges that may 

not be as convincing as demonstrating a clear effect. Issues such as errors in model 

specification, data limitations, and underlying assumptions are more likely to impact the 

outcome in a way that obscures effects, rather than revealing them. This underscores the 

fundamental challenge in providing robust evidence for the absence of an effect, as opposed to 

demonstrating its presence. 

Secondly, this study relies on large-scale aggregated data, which incorporates various 

uncertainties and assumptions. On the individual level, buyers are likely to inform themselves 

extensively about potential foundation damages and their quality. This suggests that individual 

buyers may have a more precise understanding of risk than what is reflected by the aggregated 

risk scores used in this study, highlighting a gap between macro-level data and micro-level 

realities. Future research and initiatives should focus on gathering detailed data on foundation 

conditions, particularly in high-risk areas, to close the gap between broad, aggregated data and 

individual buyer knowledge.  

Thirdly, the tight housing market conditions from 2014 to 2021 in the Netherlands likely 

pressured buyers into making quick decisions, often without the opportunity to thoroughly 

investigate foundation issues. Additionally, Hommes et al. (2023) note that in such a market, 

buyers frequently lack the ability to negotiate reductions in price that reflect the anticipated 

costs and efforts of necessary repairs. Indicating that risks might have affected prices were it 

not that market conditions override these concerns, compelling buyers to prioritize purchase 

opportunities over potential risks. Therefore, it is crucial to incorporate how sustained periods 

of tight housing market conditions alter the traditional dynamics of risk assessment and price 

negotiation in future hedonic pricing models. Practically, policymakers and real estate 

professionals could benefit from developing tools and strategies to better inform buyers about 

potential foundation risks, especially under the tight Dutch housing market conditions expected 

in the coming decade. This could include enhanced disclosure requirements to increase 
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transparency or the introduction of standardized assessments for foundation risks, which could 

help balance the negotiation power between buyers and sellers, ensuring that property prices 

more accurately reflect underlying risk factors. 

Additionally,  the correlation between subsidence and soil types warrants caution, as soil types 

may be reflecting the effects of subsidence. Part of the reason why subsidence has such a 

consistent effect on prices is likely because expected subsidence is correlated with historic 

subsidence, leading to lower prices in areas already being affected by subsidence. The 

correlations between foundation probabilities, soil types, and subsidence indicate that directly 

measuring the effects of future risks and risk drivers on house prices is challenging. These risks 

are likely correlated with past damages resulting from subsidence, which include not only 

foundation problems but other related issues as well. 

Finally, another limitation of this study is the minimal to negligible risk levels across many 

neighborhoods and regions within the study area, which influenced the locations with 

concentrations of risks driving the results. For instance, the prevalence of pole rot in city centers 

and older houses may create an apparent increase in price associated with risk, complicating 

accurate inference. This issue is further exemplified by attempts to measure nonlinear effects 

using categorical distinctions, which inadvertently led to comparisons between groups situated 

in distinct regions and, consequently, different housing markets. To overcome this problem 

future studies should look at more regional effects, hopefully providing robust and useful 

results for local governments and organizations.  
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6. Conclusion 

This study embarked on a detailed exploration of the relationship between foundation risks and 

housing prices, focusing on the Dutch real estate market, which has a significant prevalence of 

foundation-related issues. Between 750,000 and 1,000,000 homes in the Netherlands are either 

currently affected or at risk of experiencing foundation damage, highlighting a significant issue 

that could profoundly impact property values. The primary goal of this thesis was to determine 

whether and to what extent foundation risks are incorporated into housing prices, with the 

overarching expectation that such risks do not significantly influence house prices. This 

hypothesis stems from an assumption that the market's understanding and incorporation of 

foundation risks into property valuations are limited, likely due to buyers' inadequate 

knowledge about the specific foundation conditions of properties and the depreciation risks if 

foundation problems are discovered. The complexities associated with detecting foundation 

risks such as pole rot and differential settlement, which often develop gradually and remain 

undetectable without thorough inspections, further exacerbate this lack of awareness. 

The results of the study underscore but do not prove the hypothesis to be true. The coefficients 

of neighborhood risk variables demonstrate that foundation risks are not related to adjustments 

in property prices. This finding was observed using a hedonic pricing model and difference-in-

differences specification to estimate the impact of foundation risks. Interestingly, this study 

uncovered small but significant relationships between soil types and house prices, necessitating 

further research. Notably, properties situated on peat soils were associated with lower prices, 

whereas those on clay soils commanded higher prices. Additionally, substantial levels of 

subsidence were found to negatively impact prices, a result that aligns with existing literature. 

The discrepancy in market behavior underscores the need for comprehensive policy 

interventions to enhance market transparency and improve the accuracy of property valuations. 

This can be addressed by improving disclosure requirements, mandating foundation 

inspections prior to sales, and introducing standardized foundation assessments, possibly 

supported by governmental or industry-led schemes. Such measures would rectify market 

inefficiencies by providing all parties with critical information, enabling more informed 

decision-making and ensuring fairer transaction conditions. These changes would not only 

increase buyer knowledge but also lead to a clearer understanding of property values, 

benefiting stakeholders across the real estate market. 
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In conclusion, this study not only highlights the significant impact of information gaps in the 

housing market regarding foundation risks, but also illuminates a critical market distortion and 

underscores the need for policy interventions to enhance information dissemination and market 

efficiency. By providing empirical evidence on the economic relationship between foundation 

risks and home values, and demonstrating the versatility and utility of hedonic pricing models, 

this research contributes significantly to the field, enhancing the methodological toolkit 

available for evaluating economic impacts of environmental characteristics and improving the 

long-term viability of residential real estate investments and public welfare. 
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Appendices: 

Appendix A: Maps 

Figure A1. Pole Rot Risk map of 

the study area. 

 

 

 

 

 

 

 

 

 

Figure A2. Differential 

Settlement Risk map of the study 

area. 

 

  



 

63 

 

Appendix B: Descriptives 

Table B1: Risk Distribution over Municipalities 

 Pole Rot  Differential Settlement  

Municipalit

y 
0-1 1-3 3-8 >8 0-1 1-3 3-8 >8 Total 

Nieuwegein 
13,449 

(89.4%) 

1,592 

(10.6%) 

3 

(0.02%) 

0  

(0.0%) 

12,748 

(84.8%) 

1,844 

(12.3%) 

452 

(3.0%) 

0  

(0.0%) 
15,044 

Amstelveen 
14,505 

(73.3%) 

4,684 

(23.7%) 

598 

(3.0%) 

0  

(0.0%) 

18,001 

(91.0%) 

1,465 

(7.4%) 

321 

(1.6%) 

0  

(0.0%) 
19,787 

Amsterdam 
100,456 

(58.3%) 

17,272 

(10.0%) 

34,505 

(20.0%) 

20,252 

(11.7%) 

115,395 

(66.9%) 

41,278 

(23.9%) 

14,559 

(8.4%) 

1,253 

(0.7%) 
172,485 

Haarlem 
19,455 

(42.9%) 

14,039 

(31.0%) 

8,553 

(18.9%) 

3,309 

(7.3%) 

27,842 

(61.4%) 

16,615 

(36.6%) 

899 

(2.0%) 

0  

(0.0%) 
45,356 

Zaanstad 
15,123 

(48.5%) 

6,934 

(22.2%) 

7,862 

(25.2%) 

1,263 

(4.1%) 

18,150 

(58.2%) 

8,485 

(27.2%) 

24 

(0.1%) 

4,523 

(14.5%) 
31,182 

Alphen aan 

den Rijn 

14,342 

(67.1%) 

6,642 

(31.1%) 

400 

(1.9%) 

0  

(0.0%) 

18,599 

(87.0%) 

1,044 

(4.9%) 

1,268 

(5.9%) 

473 

(2.2%) 
21,384 

Dordrecht 
17,091 

(65.9%) 

7,328 

(28.2%) 

458 

(1.8%) 

1,055 

(4.1%) 

21,398 

(82.5%) 

4,534 

(17.5%) 

0  

(0.0%) 

0  

(0.0%) 
25,932 

Gouda 
9,519 

(51.0%) 

6,548 

(35.1%) 

2,585 

(13.8%) 

21 

(0.1%) 

16,596 

(88.9%) 

674 

(3.6%) 

1,403 

(7.5%) 

0  

(0.0%) 
18,673 

Rotterdam 
50,732 

(62.8%) 

27,052 

(33.5%) 

2,923 

(3.6%) 

0  

(0.0%) 

56,370 

(69.9%) 

22,123 

(27.4%) 

2,214 

(2.7%) 

0  

(0.0%) 
80,707 

Zoetermeer 
25,556 

(99.9%) 

9  

(0.04%) 

21  

(0.1%) 

0  

(0.0%) 

1,660 

(6.5%) 

16,564 

(64.7%) 

2,671 

(10.4%) 

4,691 

(18.3%) 
25,586 

Total 
280,228 

(61.4%) 

92,100 

(20.2%) 

57,908 

(12.7%) 

25,900 

(5.7%) 

306,759 

(67.3%) 

114,626 

(25.1%) 

23,811 

(5.2%) 

10,940 

(2.4%) 
456,136 
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Table B2: Subsidence Distribution over Municipalities 

Municipality 
Small (0-2 

mm/year) 

Medium (2-3 

mm/year) 

Large (3-4 

mm/year) 

Very Large 

(>4 

mm/year) 

Total 

Nieuwegein 13,73 375 394 545 15,044 

Amstelveen 17,585 187 272 1,743 19,787 

Amsterdam 136,698 2,04 1,629 32,118 172,485 

Haarlem 37,616 1,408 1,476 4,856 45,356 

Zaanstad 15,569 1,915 1,559 12,139 31,182 

Alphen aan den Rijn 10,303 332 484 10,265 21,384 

Dordrecht 25,877 2 0 53 25,932 

Gouda 12,08 869 913 4,811 18,673 

Rotterdam 71,112 895 747 7,953 80,707 

Zoetermeer 24,936 14 20 616 25,586 

Total 365,506 8,037 7,494 75,099 456,136 
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Table B3: Soil Type Distribution over Municipalities 

Municipality Sandy Soil Clay Soil 
Clay/Peat 

Soil 
Peat Soil Total 

Nieuwegein 9,658 2,612 2,473 301 15,044 

Amstelveen 4,449 10,599 4,435 304 19,787 

Amsterdam 83,751 14,916 47,937 25,881 172,485 

Haarlem 42,647 1 1,7 1,008 45,356 

Zaanstad 7,665 272 19,22 4,025 31,182 

Alphen aan den Rijn 7,973 2,675 9,511 1,225 21,384 

Dordrecht 6,018 1,359 17,385 1,17 25,932 

Gouda 921 0 1,058 16,694 18,673 

Rotterdam 26,228 4,293 40,064 10,122 80,707 

Zoetermeer 13,464 8,363 3,742 17 25,586 

Total 202,774 45,09 147,525 60,747 456,136 

 

Table B4: Neighborhood Area Statistics 

Statistic Value Unit 

Count 987 entries 

Unique Values 345 different areas 

Missing Values 0 entries 

Minimum Value 0 km2 

Maximum Value 56.67 km2 

Range 56.67 km2 

Sum 1,865.87 km2 

Mean Value 1.29 km2 

Median Value 0.33 km2 

Coefficient of Variation 0.28 - 
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Appendix C: Regressions 

Table C1: Controls on Log Price  
 (1) (2) (3) (4) 

VARIABLES     

     

Size (in m2) 0.006*** 0.007*** 0.006*** 0.006*** 

 (0.0000) (0.0000) (0.0000) (0.0000) 

Number of Rooms 0.073*** 0.025*** 0.025*** 0.025*** 

 (0.0008) (0.0008) (0.0006) (0.0006) 

Distance to Center (in km) -0.006*** -0.010*** -0.025*** -0.007*** 

 (0.0003) (0.0002) (0.0009) (0.0014) 

Terraced House -0.141*** -0.108*** 0.100*** 0.099*** 

 (0.0018) (0.0014) (0.0011) (0.0012) 

Semi-Detached House -0.086*** -0.062*** 0.173*** 0.168*** 

 (0.0022) (0.0018) (0.0015) (0.0015) 

Detached House 0.089*** 0.060*** 0.344*** 0.333*** 

 (0.0053) (0.0049) (0.0040) (0.0039) 

Garden -0.066*** -0.047*** 0.000 0.004*** 

 (0.0016) (0.0013) (0.0008) (0.0008) 

Maintenance Outside 0.346*** 0.462*** 0.172*** 0.155*** 

 (0.0088) (0.0071) (0.0046) (0.0044) 

Maintenance Inside 0.291*** 0.353*** 0.278*** 0.277*** 

 (0.0082) (0.0065) (0.0040) (0.0038) 

Good Maintenance 0.040*** 0.031*** 0.050*** 0.051*** 

 (0.0026) (0.0020) (0.0012) (0.0012) 

Listed Building 0.257*** 0.162*** 0.082*** 0.069*** 

 (0.0053) (0.0043) (0.0031) (0.0030) 

Constructed before 1906 -0.609*** -0.273*** -0.138*** -0.127*** 

 (0.0641) (0.0474) (0.0479) (0.0484) 

Constructed between 1906-1930 -0.747*** -0.369*** -0.172*** -0.150*** 

 (0.0641) (0.0474) (0.0479) (0.0484) 

Constructed between 1931-1944 -0.890*** -0.517*** -0.146*** -0.137*** 

 (0.0641) (0.0474) (0.0479) (0.0484) 

Constructed between 1945-1959 -0.977*** -0.606*** -0.209*** -0.198*** 

 (0.0642) (0.0475) (0.0479) (0.0484) 

Constructed between 1960-1970 -1.051*** -0.669*** -0.265*** -0.240*** 

 (0.0641) (0.0474) (0.0479) (0.0484) 

Constructed between 1971-1980 -1.070*** -0.701*** -0.205*** -0.189*** 

 (0.0641) (0.0474) (0.0479) (0.0484) 

Constructed between 1981-1990 -0.948*** -0.580*** -0.173*** -0.155*** 

 (0.0641) (0.0474) (0.0479) (0.0484) 

Constructed between 1991-2000 -0.803*** -0.429*** -0.050 -0.029 

 (0.0641) (0.0474) (0.0479) (0.0484) 

Constructed between 2001-2010 -0.686*** -0.466*** -0.033 -0.005 

 (0.0641) (0.0474) (0.0479) (0.0484) 

Constructed between 2011-2020 -0.487*** -0.485*** -0.045 -0.026 

 (0.0643) (0.0475) (0.0480) (0.0485) 

Constructed in 2021 -0.218*** -0.524*** -0.066 -0.076 

 (0.0681) (0.0526) (0.0504) (0.0509) 

     

Constant 12.023*** 11.194*** 11.567*** 10.915*** 

 (0.0643) (0.0477) (0.0483) (0.0491) 

     

Year FE (21) No Yes Yes Yes 

Neighborhood FE (987) No No No Yes 

Postal code FE (255) No No Yes No 

     

Observations 456,136 456,136 456,136 456,136 

R-squared 0.489 0.705 0.885 0.894 
Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table C2: Neighborhood risks and subsidence categories (interacted) 

 (1) (2) 

VARIABLES Pole Rot Differential 

Settlement 

   

Risk (1 SD) ×  Medium (2-3 mm/year) -0.016** -0.001 

 (0.0066) (0.0046) 

Risk (1 SD) × Large (3-4 mm/year) -0.025*** -0.002 

 (0.0068) (0.0050) 

Risk (1 SD) × Very Large (>4 

mm/year) 

-0.001 -0.003 

 (0.0062) (0.0042) 

   

   

Risk (1 SD) 0.003 -0.002 

 (0.0043) (0.0056) 

Medium (2-3 mm/year) -0.002 -0.006 

 (0.0076) (0.0079) 

Large (3-4 mm/year) -0.009 -0.013 

 (0.0084) (0.0089) 

Very Large (>4 mm/year) -0.016** -0.014** 

 (0.0063) (0.0063) 

   

Constant 11.563*** 11.568*** 

 (0.0453) (0.0443) 

   

Year FE (21) Yes Yes 

Postal code FE (255) Yes Yes 

Property Controls (11) Yes Yes 

Construction Year Dummies (11) Yes Yes 

   

Observations 456,136 456,136 

R-squared 0.885 0.885 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Notes: We cluster standard errors at the neighborhood level.  
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Table C3: Subsidence and Soil Types on Log Price (Neighborhood FE) 
 (1) (2) (3) (4) (5) (6) 

VARIABLES       

       

Subsidence (mm/year) -0.002***      

 (0.0001)      

Subsidence (> 3 

mm/year) 

 -0.015*** 

(0.0011) 

    

       

Sandy Soil   -0.003***    

   (0.0008)    

Clay Soil    0.018***   

    (0.0012)   

Clay/Peat Soil     -0.001  

     (0.0008)  

Peat Soil      -0.008*** 

      (0.0013) 

       

Constant 11.570*** 11.568*** 11.568*** 11.566*** 11.567*** 11.570*** 

 (0.0483) (0.0482) (0.0484) (0.0484) (0.0483) (0.0482) 

       

Year FE (21) Yes Yes Yes Yes Yes Yes 

Neighborhood FE (987) Yes Yes Yes Yes Yes Yes 

Property Controls (11) Yes Yes Yes Yes Yes Yes 

Construction Year 

Dummies (11) 

Yes Yes Yes Yes Yes Yes 

       

Observations 456,136 456,136 456,136 456,136 456,136 456,136 

R-squared 0.885 0.885 0.885 0.885 0.885 0.885 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table C4: Foundation Probabilities on Log Price (excluding construction year dummies) 

 (1) (2) (3) 
VARIABLES    

    

Wooden Foundations -0.010***   

 (0.0015)   

Shallow Foundations  -0.026***  

  (0.0025)  

Concrete Foundations   0.011*** 

   (0.0012) 

    

Constant 10.656*** 10.656*** 10.645*** 

 (0.0087) (0.0087) (0.0087) 

    

    

    

Year FE (21) Yes Yes Yes 

Neighborhood FE (987) No No No 

Postal code FE (255) Yes Yes Yes 

Property Controls (11) Yes Yes Yes 

Construction Year Dummies (11) No No No 

    

Observations 456,136 456,136 456,136 

R-squared 0.889 0.889 0.889 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

Table C5: Foundation Probabilities on Log Price (Neighborhood FE) 

 (1) (2) (3) 
VARIABLES    

    

Wooden Foundations -0.001   

 (0.0017)   

Shallow Foundations  -0.007***  

  (0.0024)  

Concrete Foundations   0.002 

   (0.0013) 

    

Constant 10.676*** 10.676*** 10.674*** 

 (0.0081) (0.0081) (0.0083) 

    

Year FE (21) Yes Yes Yes 

Neighborhood FE (987) Yes Yes Yes 

Postal code FE (255) No No No 

Property Controls (11) Yes Yes Yes 

Construction Year Dummies (11) Yes Yes Yes 

    

Observations 456,136 456,136 456,136 

R-squared 0.894 0.894 0.894 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table C6: Neighborhood Risks on Log Price with Varying Spatial Effects 

 Neighborhood FE Postal code FE Municipality FE 
 (1) (2) (3) (4) (5) (6) 

VARIABLES       

       

Pole Rot Risk (1 SD) 0.008  0.002  0.023***  

 (0.0055)  (0.0041)  (0.0052)  

Differential Settlement 

Risk (1 SD) 

 -0.000 

(0.0049) 

 -0.005 

(0.0037) 

 0.011* 

(0.0064) 

       

       

Constant 10.912*** 10.915*** 11.560*** 11.567*** 10.891*** 10.905*** 

 (0.0414) (0.0413) (0.0464) (0.0443) (0.0396) (0.0426) 

       

Year FE (21) Yes Yes Yes Yes Yes Yes 

Neighborhood FE (987) Yes Yes No No No No 

Postal code FE (255) No No Yes Yes No No 

Municipality FE (10) No No No No Yes Yes 

Property Controls (11) Yes Yes Yes Yes Yes Yes 

Construction Year 

Dummies (11) 

Yes Yes Yes Yes Yes Yes 

       

Observations 456,136 456,136 456,136 456,136 456,136 456,136 

R-squared 0.894 0.894 0.885 0.885 0.828 0.827 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Notes: We cluster standard errors at the neighborhood level. 

 

Table C7: Neighborhood risks categories 

 (1) (2) 

VARIABLES Pole Rot Differential Settlement 

   

Low (2-3) 0.024** -0.001 

 (0.0097) (0.0086) 

Medium (3-6) 0.007 -0.035* 

 (0.0127) (0.0192) 

High (6-15) -0.005 -0.000 

 (0.0197) (0.0253) 

Very high (>15) 0.006 -0.004 

 (0.0213) (0.0473) 

   

Constant 11.562*** 11.569*** 

 (0.0464) (0.0446) 

   

Year FE (21) Yes Yes 

Postal code FE (255) Yes Yes 

Property Controls (11) Yes Yes 

Construction Year Dummies (11) Yes Yes 

   

Observations 456,136 456,136 

R-squared 0.885 0.885 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

 

 



 

71 

 

Appendix D: Parallel trends 

 
Figure D1. Price trends for houses on sandy soils and other soils.  

 
Figure D2. Price trends for houses on sandy, clay, clay/peat and peat soils.  
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Table D1: Soil and time trends for the PTA 
 (1) 
VARIABLES  

  

Unsafe Soil × Pre-1960 -0.003** 

 (0.0012) 
Unsafe Soil × Post-1970 0.052*** 

 (0.0011) 
Constant 10.659*** 

 (0.0086) 
  

Postal code FE (255) Yes 

Property Controls (11) Yes 

Year FE (21) Yes 

  

Observations 456,136 

R-squared 0.889 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

 interaction_pre = 0 

 

    F(1,455114) =  6.63 

      Prob > F =  0.0100 
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Appendix E: Correlation matrices 
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Appendix F: Research portfolio 

Link to the research portfolio. 

https://drive.google.com/file/d/11ecod6ZnqzVH9s0smngFe9ijSP8jduxK/view?usp=sharing

