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ABSTRACT 

This study investigates to what extent the first-mile accessibility to a transit stop influences the use 
of public transport by travelers. For this purpose, data has been collected about smartcard check-
ins at bus stops located in the Dutch provinces Drenthe and Groningen. In these peripheral 
regions, the bus network has seen a significant degradation since 2018.  By use of GIS-software, 
the average distance to a bus stop from residents of the service area has been computed for the 
years 2015 up to 2022, forming the measure of first-mile accessibility in this study. Compared to 
previous studies, this analysis implements a broader definition of service areas and uses a more 
advanced measurement of distance. An OLS regression model with year-fixed effects is estimated 
to quantify the effect of distance to a bus stop on average yearly check-ins per resident of the 
service area. The elasticity of check-ins per capita with respect to the distance to a bus stop is 
found to be -0.77, suggesting a relatively strong relationship of distance to the bus stop on bus 
usage. Understanding how sensitive travelers are to the distance to a bus stop, could help public 
transport planners in designing more optimal routes. 

 

Keywords: public transport, bus stops, travel behavior, first-mile, accessibility, distance 
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1. Introduction 

Public transport plays a significant role in enhancing mobility in the Netherlands, by providing access 

to work, education, and other amenities for those who can’t drive or can’t afford a private vehicle. 

Furthermore, public transport is a sustainable form of transportation and it plays a role in reducing 

externalities caused by congestion (Rijksoverheid, 2024). The availability of transportation also plays a 

role in the prevention of social exclusion, for example for physically disadvantaged groups in society. 

(Currie & Delbosc, 2010). However, good accessibility by public transport is not a given in each corner 

of the country. Since 2018, provinces located in the north of the Netherlands have seen a significant 

degradation of public transport. To illustrate, in the province Groningen a number of 208 bus stops have 

been taken out of service, which is a decrease of 15 percent (RTV Noord, 2023). A recent analysis by 

Planbureau voor de Leefomgeving (PBL) on accessibility to amenities in the Netherlands suggests that 

the limited availability of public transport in suburban and rural areas forms the core of accessibility 

problems in the country, with consequences more severe than the increasing road congestion in the 

country (Bastiaansen & Breedijk, 2022).  

 Accessibility to amenities by public transport also entails the accessibility to transit stops, which 

is the first sequence of the journey. In transport literature, this aspect has received considerable attention, 

but is often focused on urban areas only (Ewing & Cervero, 2010; Mulley et al., 2018; Aman & Smith-

Colin, 2020). This study investigates how much the first-mile accessibility influences ridership under 

the local population, focusing on two rural provinces in the Netherlands; Drenthe and Groningen.  

 A better understanding about what it is worth to bring public transport closer to people, can 

result in more optimal routing and bus stop placement by planners, contributing to the attractiveness of 

public transport. The central question of this research is: “To what extent does the distance to the nearest 

bus stop affect bus usage by local residents?”. To answer this question, GIS-software is used to compute 

the average distance to a bus stop from its service area. Data on the total number of check-ins at bus 

stops in Drenthe and Groningen forms the basis for bus usage of residents. Regression analysis will 

estimate the size of the relationship between the distance to a stop and bus usage, in the form of an 

elasticity. 

 The remaining part of the paper is organized as follows: Chapter 2 includes a review of literature 

about the analysis of public transport demand and its determinants. Chapter 3 contains a detailed 

description of the data used and how this data is processed, and specifies the model to be estimated. 

Chapter 4 presents the estimated results about the relationship between distance to a bus stop and bus 

usage, and includes checks for robustness. Finally, Chapter 5 contains a conclusion and devotes attention 

to the interpretation of the main result. Additionally, this chapter discusses limitations of this study and 

proposes opportunities for further research.  
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2. Literature review 

2.1. Common methods in analyzing demand 

In the transport literature a variety of methods are used to analyze the influence of service characteristics 

on the tendency of people to use public transport, or to use a specific type of public transport if multiple 

alternatives are present. A distinction can be made between studies that use stated preference (SP) 

techniques, and studies based on revealed preference (RP) that use data on observed travel behavior. 

2.1.1. Choice experiments 

Stated preference studies commonly take the form of discrete choice experiments. Borsje et al. (2023) 

have conducted a discrete choice survey in The Netherlands to obtain insight about respondents’ 

preferences towards eight different attributes of Bus Rapid Transit (BRT), including service and vehicle 

characteristics. Results have been obtained through estimating a Multinominal Logit model. Bronsvoort 

et al. (2021) have carried out a between-mode SP survey targeted to bus users in Dutch rural areas, 

comparing conventional bus services with flexible alternatives, such as demand-responsive transport. 

For this last alternative, attributes like booking time and travel time uncertainty have been included in 

their choice experiment. To account for correlations between alternatives and heterogeneity in taste, they 

estimated Nested Logit (NL) and Mixed Logit models. Mulley et al. (2018) used a stated choice 

experiment to obtain insight about the trade-off between access distance and service frequency in various 

cities around the world. Also the effect of crowding levels in vehicles was included. They made use of 

an error component model that allows for the panel structure of the data, unlike a NL model (Mulley et 

al., 2018).  

 Bourgeat (2015) used a combined RP and SP approach to investigate participants’ attitude 

towards bus service characteristics. Participants were first asked to provide information about perceived 

characteristics of their last bus trip. Subsequently, they were asked to indicate their preference towards 

varying service configuration sets, and how likely a certain configuration could replace the trip they 

initially described. Through this approach, SP elasticities could be compared to ‘real-life’ elasticities 

from RP models to ensure the external validity of bus choice elasticities (Bourgeat, 2015). 

2.1.2. Demand models and endogeneity 

The current study will take a RP approach using data on actual bus passenger demand and different 

explanatory variables. The use of actual data would allow for a more realistic estimation of this study’s 

variable of interest, distance to bus stop. In contrast, the SP experiment by Mulley et al. (2018) uses only 

four different possible values for access distance. A RP setup also prevents possible hypothetical bias. 

This section gives an overview of causal analyses of public transport demand in empirical studies that 

use actual data. 

 A wide range of studies have been written about the determinants of public transport demand. 

Taylor & Fink (2003) and Holmgren (2007) provide an overview of explanatory factors, such as service 

level variables, income, car ownership, and fares. Both studies discuss potential estimation problems 
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arising from endogenous supply variables that explain demand. As stated by Holmgren (2007), the 

number of trips made likely influences the supply of vehicle-kilometres, and the latter therefore should 

be treated as endogenous. Simultaneous or reverse causality as a form of endogeneity in models is a 

problem because the error term is correlated with one or more independent variables. This results in 

biased OLS coefficient estimates, which could lead to drawing incorrect conclusions about the 

relationship between variables (Stock & Watson, 2020). 

 Studies have used different methods to deal with endogeneity in models that explain passenger 

demand. Taylor et al. (2009) analyzed factors influencing ridership using Two Stage Least Squares 

(2SLS) regression, to address the simultaneity between service supply and consumption. Initially, they 

regress a measure of supply on all its exogenous determinants, excluding demand, and obtain estimated 

values. Next, they regress demand on the estimated supply along with other exogenous determinants of 

demand. According to Chen et al. (2011), however, an instrumental variable approach would not be able 

to measure an effect of demand on supply if there is one. Other studies made use of the concept of 

Granger-causality (Holmgren, 2005; Rayaprolu & Levinson, 2024). This method allows to test for the 

existence of a feedback relationship, relying on the data’s time dimension (Granger, 1969). 

2.2. Determinants of public transport demand 

This section provides an overview of findings and methodological choices made in studies that 

investigated the drivers of ridership in public transport. In this review the main attention is given to 

accessibility to transit, service frequency, and socio-demographic characteristics. 

2.2.1. Accessibility to transit  

Accessibility in public transport has multiple dimensions. One share of literature in this field focuses on 

the accessibility from residential areas to the city center or to jobs by public transport, sometimes in 

comparison with other modes (Rayaprolu & Levinson, 2024; Liu et al., 2022; Conwell et al., 2023; 

Aman & Smith-Colin, 2020). A selection of them incorporated the first stage of a journey; the access to 

a transit stop. This type of transit accessibility is the focus of the current research. Aman & Smith-Colin 

(2020) created a comprehensive public transit accessibility (CPTA) score per census tract in Dallas, 

USA. This measure includes connectivity to destinations as well as connectivity to the network, but also 

service frequency. A disadvantage is that connectivity to the network is not weighted by population 

density patterns within the bus stop service area. Rayaprolu & Levinson (2024) controlled for first-mile 

accessibility in their model that explains station-level ridership, through counting the population within 

15-minute walking time to the train station. However, this approach does not exploit variation in access 

time or distance within the service area of the transit stop. A similar method is used in a Dutch study by 

Kerkman et al. (2015), who analyzed factors explaining transit ridership at stop level in the Arnhem-

Nijmegen urban area. The authors have used a circular 400-meter buffer around each stop to define its 

service area. This study did not consider potential endogeneity between transit supply and potential 

demand. 



6 

 

 Other studies have used the distance to a transit stop as a variable accessibility measure that 

explains transit use. Ewing & Cervero (2010) conducted a meta-analysis about associations between 

travel and built environment. Based on three studies that focus on urban areas in the USA, they computed 

a weighted average elasticity of transit use with respect to distance to nearest transit stop of -0.29, 

indicating that people make less use of transit when they live further away from a transit stop. Bento et 

al. (2003) recognized that households that plan to use public transport are likely to locate themselves 

close to a transit stop, forming a source of endogeneity. Mulley et al. (2018) investigated the trade-off 

between walking distance to a bus stop and frequency using a stated choice experiment. They find that 

travelers in US and UK cities are prepared to walk 370 to 475 meters further to a transit stop if headways 

are reduced by 10 minutes. This suggests that transit users are less sensitive to distance when a higher 

level of service is provided.  

2.2.2. Frequency 

Service frequency is an important factor related to transit use, because it has a substantial impact on total 

travel time, and thus on the willingness to use public transport. The underlying dynamics between 

demand, frequency, and waiting time has been described in the theory of Mohring (1972). Frequency 

influences user costs in the form of waiting time at the origin stop, as well as transfer time between 

vehicles (Hörcher & Tirachini, 2021; Mohring, 1972; Iseki & Taylor, 2009; Litman, 2008).  

 Borsje et al. (2023) concluded from their discrete choice survey about BRT in the Netherlands 

that frequency is the most valued attribute of bus services, followed by service hours, stop spacing, and 

reliability on arrival. The most preferred service formula, the ‘Conventional’ type, is characterized by 

moderate frequency and short stop spacing (Borsje et al., 2023). This last characteristic is closely related 

to the distance to a transit stop. Graham et al. (2009) found in a panel data analysis on metro networks 

that frequency has a greater impact on demand compared to other factors such as fares. Although these 

studies suggest an association from frequency to demand, other studies give indication for an opposite 

direction of effect. Börjesson et al. (2017) found that optimal level of frequency is subject to differences 

in demand between peak and off-peak periods during the day. Bar-Yosef et al. (2013) study the presence 

of vicious cycles of bus lines when demand is low. They state that low demand triggers the transit 

operator to cut expenses through reducing frequency. Existing travelers might then opt for alternative 

types of transport, which decreases demand further, et cetera. Thus with regard to analyzing frequency, 

a major endogeneity issue may be present. 

2.2.3. Socio-demographic characteristics 

The literature also indicates that socio-demographic factors influence public transport demand. With 

regard to age, Kerkman et al. (2015) finds that the percentage of elderly in a service area (above 65 years 

old) is negatively related to bus ridership. This suggests that it is mainly the younger generations that 

travel by bus, which is logical because they travel more frequently for work or education. Numerous 

studies have been written about the positive relationship between employment and public transport use, 
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such as Chen et al. (2011) and Taylor & Fink (2003). Average household income appears to have a 

negative effect on ridership (Kerkman et al., 2015; Dargay & Hanly, 2002). A reason for this is that 

households with a higher income are more likely to own a car (Nolan, 2010). Graham et al. (2009) raise 

the point that the effect of income on ridership is generally positive in studies that also include car 

ownership in their model. This can be explained by the observation that people are more involved in 

activities that require transportation as incomes increase. But if car ownership is excluded, the negative 

effect takes over because income then picks up the car ownership effect on transit use. Graham et al. 

(2009) adds that most studies have not included both of the variables income and car ownership due to 

multicollinearity. 

2.2.4. Fares 

Fares are a relevant factor in explaining public transport demand, because they directly influence the 

cost of using public transport. However, there is a general agreement in the literature that variation in 

fares impacts demand significantly less than the level of service (Graham et al., 2009; Brechan, 2017; 

Kain & Liu, 1999). Kerkman et al. (2015), who analyze stop-level ridership similarly to the current 

research, state that fares are not very useable when analyzing ridership at stop level. As the price is 

mostly determined by the length of a trip, it is hard to address fares to stop locations. On top of that, 

fares would not affect travelers with a free-travel subscription, such as students, which comprise a 

relatively large share of ridership. 

2.3. Research gap 

This literature review reveals that most studies about the factors influencing public transport demand 

primarily concentrate on urban areas. The current study will focus on two ‘rural’ provinces in the 

Netherlands; Drenthe and Groningen. In these areas, few travel options are available compared to the 

larger cities in the country, which have metro or tram systems. Leaving private types of transport aside, 

areas of lower density are reliant on a relatively sparse bus network. Due to large variations in residents’ 

proximity to bus stops, the mentioned area of study could provide a better setting to analyze to what 

extent people are prepared to bridge large distances to arrive at a bus stop. 

 Another difference to previous studies that analyzed distance to a bus stop and demand, is that 

the current study will allocate the whole study area to the service area of a specific bus stop. Kerkman 

et al. (2015), who also analyzed stop-level ridership in a part of the Netherlands, used a 400-meter range 

as service areas. Rayaprolu & Levinson (2024) counted the population living within 15 minutes walking 

time from a station to measure accessibility. It is plausible that service areas can reach larger than the 

ranges these studies have chosen, especially when travelers use a bicycle or even a car for the first mile. 

The current study presumes variability in service area sizes, and accounts for the distribution of the 

population within the service area of a transit stop to obtain a measure for accessibility.  
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3. Data and methodology 

3.1. Study area 

The Dutch provinces Drenthe and Groningen form the study area of this research. These provinces are 

situated in the northeast of the Netherlands. These areas are characterized by a relatively low population 

density compared to the average national density. While the Netherlands has an average population 

density of 529 inhabitants per square kilometer, Drenthe and Groningen have a density of 191 and 260 

per square kilometer respectively (CBS, 2024-1). A convenient property of this study area is that public 

bus transport in Drenthe and Groningen is arranged as one entity, allowing for integrated transport data 

that covers both provinces. 

 Within these provinces, clear disparities exist in population density as well as the density of bus 

stops. Figure 1 illustrates the population density per municipality, and Figure 2 illustrates the density of 

bus stop locations, both in 2022. On the maps the municipalities are divided into equally sized quantiles. 

Although the color patterns differ slightly between the maps, it can be inferred that more densely 

populated areas generally have a higher density of bus stops. The differences in the density of bus stops 

over municipalities indicate that there exists significant variation in accessibility to public transport in 

the study area. 

 

 

LAYER SOURCES: Population data, CBS (2024-1); Municipality borders, CBS & 
BRK (2024); Background map, OpenStreetMap. 
Figure 1: Population density per municipality in Drenthe 
and Groningen in 2022 

LAYER SOURCES: Bus stops 2022, OV-bureau Groningen Drenthe; Municipality 
borders, CBS & BRK (2024); Background map, OpenStreetMap. 
Figure 2: Density of bus stops per municipality in Drenthe 
and Groningen in 2022 
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3.2. Study period 

The study period of this research consists of the years 2015 up to and including 2022. This is the largest 

possible period for which data is available about public transport usage (check-ins), as well as population 

counts at raster level, which is used to calculate the average distance to a bus stop. Detailed information 

about this variable of interest can be found in section 3.5.4. The indicated period also covers the Covid-

19 pandemic, which mainly took place in the years 2020 and 2021. These years are characterized by, for 

example, small commuting flows, increased education from home, and scaled-back public transport 

provision. Recorded travel behavior in the years 2020 and 2021 is therefore not representative for normal 

patterns. Hybrid forms of work or education also remained prevalent after these years. To account for 

such possible time-varying trends, time-fixed effects are used for model estimations. In order to assess 

whether including the years 2020, 2021, and 2022 have an impact on the results, a robustness check is 

performed that runs regressions excluding these years, presented in section 4.2. 

3.3. Data sources  

This section provides a description of data sources that contain the data for the main analysis. A 

distinction is made between public transport data and GIS data. 

3.3.1. Public transport data 

• Excel file “Incheckers per halte per lijn”, provided by OV-bureau Groningen Drenthe 

For each the years 2014-2023 it contains the total number of check-ins by smartcard (‘OV-

chipkaart’) at each bus stop serviced by Qbuzz, which is the bus transport provider in Drenthe 

and Groningen. Check-ins are also reported per system route number that services the bus stop 

in the relevant year. The year 2023 is incomplete and only covers the first quarter of that year. 

• Current timetables Qbuzz 

Due to the unavailability of historic data on frequency of bus routes in the area under study, 

frequency per bus route is approximated using current frequencies. Current timetables, of year 

2024, are provided online by the bus transport provider Qbuzz (2024).  

3.3.2. GIS data 

• CBS 100 meter-raster map of the Netherlands with statistics  

This shapefile obtained from CBS (2024-2) consists of 100-by-100-meter raster cells with 

statistics on, amongst other things, demographics, housing, and proximity to amenities. It only 

includes raster cells for which at least one value is recorded for a variable. Detailed data is 

available for the years 2015-2023. However, more recent years do not yet include all statistics.  

 As described by Malekzadeh & Chung (2020), data with high resolution is important 

for the accuracy of transit accessibility measurements. The allocation of service areas in this 

study, described in section 3.5.4, becomes inaccurate for areas with a high density of bus stops 
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when lower resolution is used. A resolution of 500 by 500 meter, which CBS provides as well, 

would not be appropriate in this setting. 

• Transport features OpenStreetMap 

To locate bus stops and train stations on the map in the software of QGIS, shapefiles with 

transport features in Drenthe and Groningen have been downloaded from Geofabrik (2024). 

These files include features such as bus stops, railway stations, and ferry terminals. 

• Land use OpenStreetMap 

Shapefiles about land use types in Drenthe and Groningen have been used for the selection of 

the bus stops for the study sample. The selection of observations is described in section 3.7. This 

data has also been acquired from Geofabrik (2024). 

3.4. Variable choice 

As the dependent variable of this analysis, average check-ins per capita is the variable that measures 

the average degree of bus usage in a service area. Scaling check-in numbers by the local population 

allows for comparison across service areas and is likely to create a more natural distribution of values. 

The independent variable of interest average distance to bus stop will measure how far away the 

inhabitants of the service area live, on average, from the bus stop. Total frequency at a bus stop will be 

included as a control variable because service frequency is commonly taken as an important determinant 

of public transit demand in the literature. Additionally, average distance to train station is included in 

the analysis. This variable accounts for the possibility that inhabitants of a bus stop’s service area prefer 

to travel directly from their residence to the train station, instead of first taking the bus. Travelers could 

do this because, for example, a train station is closer or they avoid transfer time. 

 Data on two socio-demographic control variables is collected. Firstly, the fraction of 15 to 65 

years old is used because this group is assumed to travel more frequently due to the number of 

commuters and students in this group. Secondly, a variable expressing (household) income would fit in 

the analysis to account for the likeliness of owning one or more cars, which forms an alternative for 

public transport (Nolan, 2010). However, income data is not offered by CBS on a 100-meter raster level, 

and merely as broadly classified categorical data on 500-meter level. An explanation is that (household) 

income is considered as privacy-sensitive information for smaller spatial units. As an alternative for 

income, average WOZ-value is used to approximate income patterns. The WOZ-value is the property 

value estimated by the municipality and is used for tax purposes. Studies such as Tu et al. (2018) and 

Boelhouwer et al. (2004) confirm the relationship between income and house prices in the Netherlands. 

3.5. Data preparation 

3.5.1. Check-ins per capita 

For each of the years 2015-2022, the total number of check-ins at a bus stop has been calculated as the 

sum of the check-ins over all bus connections that stop at this location, excluding check-ins of night 

services and school services. Afterwards, this number is divided by the population in the service area of 
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the respective bus stop, to obtain an expression for trips per person. What defines a service area is 

described in section 3.5.4.  

3.5.2. Number of bus routes 

Transfer passengers are assumed not to live in a bus stop’s service area, and ideally check-in records 

from this type of passengers should be excluded from the analysis. However, the number of transfer 

check-ins is not separately recorded in the available dataset. The number of bus routes that service a bus 

stop is used as a selection criterion to assess which bus stops are less likely used for transfers between 

bus routes. This number is calculated by counting the number of check-in values, excluding the values 

from night and school services. In the regression analysis only bus stops with a maximum of three routes 

will be examined, in order to limit the number of bus stops that largely rely on transfer traffic and to still 

maintain a sizeable dataset. The impact of using a different number of bus routes on the results will be 

assessed as a robustness check in section 4.2. 

3.5.3. Total frequency 

Timetables of bus routes are used to deduce the frequency of each bus route included in the check-ins 

dataset. Using the current timetables of Qbuzz, frequency per hour is collected manually for each bus 

route present in the smartcard check-ins data of the year 2023, which is the most recent dataset of bus 

routes and bus stops. Specifically, the frequency is taken during the late afternoon on Thursdays. A 

frequency of zero is recorded for bus routes that only operate in the morning (3 cases), or for routes with 

less than two executions in the afternoon (3 cases). Subsequently, for each bus stop in the 2023 data, 

total frequency per hour is calculated as the sum of frequencies of bus routes for which the bus stop has 

a check-ins value recorded. Bus routes that are night or school services are disregarded. The resulting 

value for total frequency per bus stop will be used for the years 2015-2022. For bus stops in the years 

2015-2022 that are not serviced anymore in 2023, the number of bus routes present in the specific year 

is used as an approximation for the frequency per hour in that year. It is assumed that bus routes that 

service a bus stop have a low frequency of one per hour before a bus stop is abolished. 

3.5.4. Average distance to bus stop 

The average distance of residents to a bus stop is calculated using the software of QGIS. Bus stop 

locations in Drenthe and Groningen have been filtered out from the transport features layer of 

OpenStreetMap. In this layer bus stops only have a name attribute. Because of the likeliness of multiple 

bus stops with the same name in the study area, municipalities are added as an attribute used to 

distinguish between these bus stops. Duplicates of the same name-municipality combination have been 

deleted, because bus stop locations on both sides of the road are included in the layer, and one location 

is needed. It is assumed that this brings minimal error for the calculation of distance to the bus stop. 

 The other dataset used for the calculation of the average distance, is the CBS 100-meter raster 

layer containing population per raster cell. Using the ‘Distance to nearest hub’ tool in QGIS, the distance 

from the center of each raster cell to the closest bus stop is calculated using a straight line. An important 
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assumption underlying this approach is that travelers start their bus trip at the closest bus stop to their 

residence.  All raster cells with the same allocated bus stop are combinedly defined as a bus stop’s service 

area. Figure 3 and Figure 4 provide visual examples of how service areas are created in QGIS, for both 

an urban part of the study area and a rural part, using data for 2022. There is a possibility that the closest 

bus stop at straight-line distance is not the closest bus stop over road, because of the low density of 

roads. Figure 4 depicts such as situation, where some raster cells on the right half of the map are closest 

to bus stop “A” over road, but are not allocated to this bus stop. This forms a source of inaccuracy in the 

service area allocation.  

 

Average distance to a bus stop from its service area is calculated as a population-weighted average; 𝐴𝐷𝐵𝑖,𝑡 = ∑ (𝑝𝑗,𝑡 × 𝑑𝑖,𝑗,𝑡)𝑗∈𝑆𝑖,𝑡∑ 𝑝𝑗,𝑡𝑗∈𝑆𝑖,𝑡  (1) 

where: 

• 𝐴𝐷𝐵𝑖,𝑡 is the average distance to bus stop 𝑖 in year 𝑡; 

• 𝑝𝑗,𝑡 is the population in 100m-raster cell 𝑗 in year 𝑡; 

• 𝑑𝑖,𝑗,𝑡 is the distance from cell 𝑗 to bus stop 𝑖 in year 𝑡; 

• 𝑆𝑖,𝑡 is the set of raster cells for which bus stop 𝑖 is the closest bus stop in year 𝑡 

 

Due to variation in operational bus stops and raster populations over time, a bus stop’s average distance 

value is likely to vary over time as well. 

The use of straight-line distance allows for efficient calculation. Computing the shortest distance or 

travel time over road would give a more realistic value for the average distance to a bus stop. This is a 

common way of measuring distance to transit (Ewing & Cervero, 2010). However, it is accompanied by 

a high computational demand in the GIS system, given the large number of raster cells for which a route 

needs to be calculated (for reference: 35,114 cells in 2022). This is the main reason why straight-line 

distance is preferred. Straight-line distance underestimates the actual distance. Because of the 

underestimated values, the use of straight-line distance is expected to yield more conservative results. If 

a significant effect is found of an understated distance on check-ins per capita, it is likely also found 

using actual travel distance. In rural areas the deviation is expected to be larger due to the lower density 

of roads compared to densely populated areas.  

3.5.5. Average distance to train station from bus stop service area 

The average distance from a bus stop’s service area to a train station is calculated similarly as the 

distance to a bus stop. For each raster cell, the straight-line distance to the closest train station is 

computed using the “Distance to nearest hub” tool in QGIS. The population-weighted average distance 

from a bus stop’s service area to a train station is described as; 
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𝐴𝐷𝑇𝑖,𝑡 = ∑ (𝑝𝑗,𝑡 × 𝑑𝑗,𝑡)𝑗∈𝑆𝑖,𝑡∑ 𝑝𝑗,𝑡𝑗∈𝑆𝑖,𝑡 (2) 

where: 

• 𝐴𝐷𝑇𝑖,𝑡 is the average distance to a train station from the service area of bus stop 𝑖 in year 𝑡; 

• 𝑝𝑗,𝑡 is the population in 100m-raster cell 𝑗 in year 𝑡; 

• 𝑑𝑗,𝑡 is the distance from cell 𝑗 to the closest train station in year 𝑡; 

• 𝑆𝑖,𝑡 is the set of raster cells for which bus stop 𝑖 is the closest bus stop in year 𝑡 

 

 

 

LAYER SOURCES: Bus stops, Geofabrik (2024); Raster cells, CBS (2024-2); Background map, OpenStreetMap. 
Figure 3: Service area allocation in the city Groningen in 2022. The ‘Distance to nearest hub’ tool in QGIS has allocated 
each raster cell to the closest bus stop. Black lines connect raster cells to the closest bus stop, and distance is measured 
along the line. Different shades of blue form the service area for the connected bus stop. 
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3.5.6. Other variables 

Data for the control variables fraction 15 to 65 years old and average WOZ-value is extracted from the 

CBS raster dataset. The fraction of 15-65 year olds is calculated by first summing the number of 15-25 

year olds, 25-45 year olds, and 45-65 year olds in a bus stop’s service area. The resulting number is then 

divided by the population in the service area. An issue with this data is that population counts per 

separate age group in a given raster cell are only recorded for a minimum of 5 people in an age group. 

On top of that, all age records are rounded to fives. These two characteristics can lead to measurement 

error for the fraction of 15 to 65 year olds, especially for low-density service areas. The use of data on 

a higher level, such as a 500-meter raster level, could have prevented missing values for age groups. 

However, age data on higher levels would not be able to cover the exact same service area as the 

variables for distance to transit. The average WOZ-value of a bus stop's service area is calculated as the 

mean of the average WOZ-values observed at each 100-meter raster cell within the service area. Values 

of 2016 are extrapolated to 2015. Due to the potential inaccuracy of the age variable and the fact that 

the WOZ-value only approximates income patterns, regressions are run both with and without these 

controls to evaluate whether they enhance the regression model. 

  

LAYER SOURCES: Bus stops, Geofabrik (2024); Raster cells, CBS (2024-2); Background map, OpenStreetMap. 
Figure 4: Service area allocation around the village Schoonoord in 2022. The ‘Distance to nearest hub’ tool in QGIS has 
allocated each raster cell to the closest bus stop. Black lines connect raster cells to the closest bus stop, and distance is 
measured along the line. Different shades of blue form the service area for the connected bus stop. 
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3.6. Initial descriptive statistics 

Table 1 presents initial descriptive statistics for the variables involved in the analysis, primarily used to 

inspect the range of values. A total of 1,827 different bus stops are identified over the years 2015 to 2022 

in the provinces Drenthe and Groningen, together accounting for 13,093 observations. For a couple of 

variables, a minimum value of 0 is recorded.  

 An explanation for zero-values for the number of routes is that bus stops have been included in 

the dataset that are solely serviced by night or school services in a certain year (135 obs., 40 stops).  

Because check-ins from these services are excluded from the check-ins count, these observations have 

the value 0 for the number of check-ins per stop. This subsequently causes check-ins per capita to obtain 

the value 0. A service area population of 0 is possible for bus stops which are not located near residential 

areas. Examples are bus stops near the recreational area Lauwersmeer, a lake in the north of the 

Groningen province. These observations are automatically excluded from model estimations because an 

average distance is missing. Bus stops with a frequency of 0 are bus stops which are, in 2024, only 

serviced in the morning or less than two times seen by a bus in the afternoon. 

 With regard to maximum values, a value for check-ins per capita of over 36,000 is remarkable. 

Figure 5 includes a histogram for check-ins per capita per year to illustrate the range of high values. 

Although most values are concentrated at the lower side of the spectrum, there are also values visible 

above 1,000. High values likely occur at bus stops where check-ins do not solely replicate journey starts 

by the local population. Examples are bus stops where passengers transfer, or travel to home after an 

activity. Another variable with a high maximum is the fraction of 15 to 65-year-olds. It is highly unlikely 

that 100 percent of a service area’s population belongs to this age category. The same holds for 0 percent, 

which is the minimum value. This is caused by the inaccurate age data in service areas that primarily 

consist of sparsely populated raster cells.  

 

Table 1: Initial descriptive statistics 

This table presents the number of observations (N), the mean value, the standard deviation (sd), the 
minimum value (min), and the maximum value (max) for the listed variables. 

 (1) (2) (3) (4) (5) 
VARIABLES N mean sd min max 

      

stopID 13,093 915.2 526.3 1 1,827 

year 13,093 2,018 2.299 2,015 2,022 

check-ins per stop 13,093 9,185 109,157 0 5,058,223 

service area population 13,071 629.7 812.9 0 12,680 

check-ins per capita 13,071 34.28 570.7 0 36,216 

av. distance to bus stop (m) 13,071 504.77 543.3 18.88 6,491 

total frequency 13,093 2.164 3.165 0 68 

routes 13,093 1.703 1.803 0 43 

av. distance to station (m) 13,071 6,427 4,874 180.9 22,938 

fraction 15 to 65 13,071 0.387 0.211 0 1 

av. WOZ-value (x €1000) 11,056 206.6 76.89 24 866.3 
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3.7. Selecting observations 

In order to analyze how bus stop usage per capita is affected by the average distance from a service area 

to its bus stop, ideally the number of recorded check-ins should be in line with starts of a journey from 

travelers’ living area. For this purpose, a selection of observation is made according to several criteria, 

which is expected to limit the number of extremely high values for check-ins per capita. An observation 

may apply to multiple of these criteria: 

• The bus stop is serviced by a maximum of 3 bus routes. If a relatively high number of bus routes 

service a bus stop, the bus stop is more likely to be used for transfers. The maximum number 3 

is a personal choice. In section 4.2, robustness checks are performed to assess the effect of 

choosing a different number on the results. A number of 1,310 observations that do not apply to 

this criterium are dropped. 

• The bus stop is not located inside an industrial, commercial, or retail area. This criterium is 

assessed in the QGIS software using the land use layer. These three land use categories are 

selected because bus stops located in these type of areas are likely to record many check-ins 

from travelers leaving work, as well as from those leaving leisure activities like shopping. An 

additional 186 observations that are located in the three land use types are dropped. 

• The bus stop is not named “Station”. Bus stops located at a train station are likely to record 

many check-ins from travelers that transfer from train to bus, as opposed to people living around 

that bus stop. An additional 73 observations that have the bus stop name “Station” are dropped. 

 

On top of the measures taken to limit high values for check-ins per capita, one additional selection 

criterium is used. Observations that record a bus stop with zero routes are dropped as well. These bus 

stop locations are unserved by regular lines (other than night and school services) and are not regarded 

as an option for travelers. Another 134 observations are excluded for this reason. However, the involved 

bus stops were included in the allocation of service areas. This likely caused an underestimation of 

service areas sizes for bus stops in the vicinity of those with zero routes. 

 Figure 6 includes a histogram for check-ins per capita after applying the selection criteria. 

Compared to figure 5, the highest values now do not reach as high, with a maximum value of around 

3,600. The selection of observations as described above has the intended effect. Still a number of values 

above 100 check-ins per capita remain, which is notably high given that it represents an average value 

for the whole service area population. After a manual investigation of bus stops with a high value for 

check-ins per capita, logical explanations can be given for high values. Examples of such bus stops are: 

bus stops at hospitals which are not assigned a land use type, bus stops in the vicinity of businesses with 

a small service area population, bus stops at P+R locations, and bus stops at event locations. As it 

appeared inevitable within the capabilities that observations of this sort remained in the dataset, a check 

for robustness will be done, running a regression without the 5% highest values for check-ins per capita. 

The robustness analysis is detailed in section 4.2. 
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3.8. Adjusted descriptive statistics 

Table 2 displays descriptive statistics of the relevant variables after the selection measures have been 

applied. Somewhat more than 1,000 observations have been left out after selection. Focusing on the 

outcome variable check-ins per capita, the minimum and the mean have changed next to the maximum 

value. The minimum value is non-zero because observations without a regular service have been 

excluded. Low values near the minimum of 0.000288 can occur in cases where a large service area is 

allocated to a hardly used bus stop. The mean has decreased from approximately 34 as initially reported 

in Table 1, to a value of 10 after selection, which is considered more realistic. The descriptive statistics 

for the variable of interest average distance to bus stop have remained stable and show acceptable values. 

 

Table 2: Adjusted descriptive statistics 

This table presents the number of observations (N), the mean value, the standard deviation (sd), the 
minimum value (min), and the maximum value (max) for the listed variables, after selection. 

 (1) (2) (3) (4) (5) 
VARIABLES N mean sd min max 

      

stopID 11,814 924.1 532.8 1 1,827 

year 11,814 2,018 2.300 2,015 2,022 

check-ins per stop 11,814 3,096 7,878 1 153,761 

service area population 11,814 588.5 767.6 0 9,680 

check-ins per capita 11,793 10.23 63.70 0.000288 3,676 

av. distance to bus stop (m) 11,793 513.0 549.8 18.88 6,491 

total frequency 11,814 1.743 1.153 0 14 

routes 11,814 1.391 0.624 1 3 

av. distance to station (m) 11,793 6,719 4,831 214.6 22,938 

fraction 15 to 65 11,793 0.374 0.204 0 1 

av. WOZ-value (x €1000) 9,858 208.1 77.79 24 866.3 

      

 

Figure 6: Histogram with distribution of check-ins per capita per 
year after applying selection criteria as described in section 3.7. 

Figure 5: Histogram with distribution of check-ins per capita per 
year using the initial dataset. 
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3.9. Model choice 

3.9.1. Time-fixed effects model 

To estimate the effect of distance on relative bus stop usage, a fixed-effects model is estimated with only 

time-fixed effects. Time-fixed effects are important because it allows for time-varying factors that 

influence relative bus stop usage over time, but are constant across the whole study area. An important 

example is the effect of the Covid-19 crisis on travel behavior. Additionally, it could capture the effect 

of economic conditions or changes in policy by the public transport operator. A time-fixed effects model 

is estimated in the form of Ordinary Least Squares (OLS) with time dummies that capture year-specific 

effects. The use of entity or spatial fixed effects has been considered as well. Using fixed effects at bus 

stop level would make the variable of frequency drop because this variable is constant over time in this 

analysis for a given bus stop. Fixed effects at municipality level would not be suitable, because during 

the period 2015-2022 merges of municipalities have taken place in the provinces Drenthe and 

Groningen. As such, potential relevant characteristics of a bus stop’s municipality may not be constant. 

A final possibility is fixed effects at town level. Perhaps, this could account for the quality or density of 

infrastructure which influences the choice of using a bus service, assuming it stayed relatively constant 

over years. Another source could be the number of amenities in a town which increases the need to travel 

if they are limited. However, the above examples are likely to have some variation over time. Due to the 

lack of compelling reasons to include town-fixed effects, it is not included in the models for the main 

analysis. Nevertheless, the effect of including town-fixed effect on the results is tested as a robustness 

check in section 4.2. 

3.9.2. Endogeneity considerations 

In order for OLS to produce consistent and unbiased estimates in a fixed effects model, a couple of 

assumptions need to hold. Hanck et al. (2024) list four important assumptions, which are now briefly 

assessed in the context of this research.  

 The first assumption is that the error term has a conditional mean of zero, which implies that 

regressors should be exogenous. Omitted variable bias and simultaneous causality are the main sources 

for violation of this assumption. For this research, the main concern is simultaneous causality concerning 

the variables check-ins and average distance to the bus stop. As described in section 2.1.2, the general 

problem of endogeneity between supply and demand characteristics in public transport is commonly 

addressed in the literature. It is imaginable that the density of active bus stops in a specific area, which 

directly affects average distance, is based on spatial variations in demand. Additionally, endogeneity 

may be present with regard to location choice of households that (plan to) use public transport, as 

described by Bento et al. (2003). The use of an instrumental variable has been considered to avoid the 

endogeneity problem. However, a relevant instrument that affects the average distance (or density), but 

which is unrelated to transit usage has not been found, given the research setting.  
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 In this research, number of check-ins is divided by the service area population, creating a more 

behavioral measure of transit use. If average distance were endogenous with respect to total check-ins, 

but total check-ins is not highly correlated with check-ins per capita, then it suggests that the endogeneity 

problem would be limited when using check-ins per capita as the outcome variable. Pearson’s pairwise 

correlations are estimated to check this, which is a coefficient between -1 and 1. Table A1 in the appendix 

presents correlations between all pairs of relevant variables. The correlation coefficient between total 

check-ins and check-ins per capita is 0.19. This correlation is regarded as sufficiently low. Therefore the 

described endogeneity problem is assumed to be limited when using check-ins per capita as the outcome 

variable. 

3.9.3. Other OLS assumptions 

Following Hanck et al. (2024), a second assumption is that variables are independently and identically 

distributed (i.i.d.) across entities, which is justified if entities are selected under simple random 

sampling. In this research, however, no random selection of bus stops has taken place. As such this 

assumption does not hold. A third assumption is that large outliers are unlikely. As described in section 

3.7, effort has been made to reduce the number of high values for check-ins per capita. Still, a range of 

high values remained in the sample. To reduce the effect of the skewed distribution, the natural logarithm 

of the variable check-ins per capita is used in the analysis. A last assumption is that there is no perfect 

multicollinearity between variables. It is made sure that no two variables in the model exploit the same 

information. This is confirmed in Table A1, where no correlations exist of (near) 1 or -1. 

 

3.10. Model specification 

Before determining the exact model equation, the use of logarithmic transformations is considered for 

the continuous variables in the model. Taking the natural logarithm helps to reduce the skewness of a 

variable’s distribution and to linearize relationships. Additionally, estimated parameters of a log-log 

model allow for the convenient interpretation of elasticities. The choice to use logarithms will be 

highlighted for the variables of interest: check-ins per capita and average distance to bus stop. Figure 6 

and Figure 7 display the distributions for check-ins per capita and the natural logarithm of check-ins per 

capita, respectively. Comparing the figures, the transformation evidently helped to spread out the 

observations captured in the large bin in Figure 6. Figure 8 and Figure 9 display the distribution of the 

variable average distance to bus stop, respectively before and after transformation. In Figure 8 the 

skewness of this variable is clearly visible when expressed in its original scale. After the logarithmic 

transformation, the distribution remains slightly right-skewed in Figure 9, but has largely improved as 

well. Since the distribution has become significantly closer to a normal distribution for both variables 

of interest, the logarithm of both check-ins per capita and average distance to a bus stop is used in the 

remainder of the analysis. 
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The most comprehensive model to be estimated is specified as follows; 

𝑙𝑜𝑔𝑌𝑖𝑡 = 𝛽0 + 𝛽1𝑙𝑜𝑔𝐴𝐷𝐵𝑖𝑡 +  𝛽2𝐹𝑟𝑒𝑞𝑖𝑡 + 𝛽3𝑙𝑜𝑔𝐴𝐷𝑇𝑖𝑡 + 𝛽4𝑙𝑜𝑔𝑊𝑂𝑍𝑖𝑡 + 𝛽5𝑎𝑔𝑒1565𝑖𝑡 + ∑ 𝛾𝑡𝑌𝑒𝑎𝑟𝑡2022
𝑡=2016 + 𝜀𝑖𝑡(3)  

where: 𝑌 is the number of check-ins per capita, 𝑙𝑜𝑔𝐴𝐷𝐵 is the natural logarithm of the average distance 

to a bus stop,  𝐹𝑟𝑒𝑞 is the total frequency at a bus stop, 𝑙𝑜𝑔𝐴𝐷𝑇 is the natural logarithm of the average 

distance to a train station, 𝑙𝑜𝑔𝑊𝑂𝑍 is the natural logarithm of the average WOZ-value, and 𝑎𝑔𝑒1565 

is the fraction of inhabitants from 15 to 65 years old. Additionally, a summation of year dummies is 

included, with the year 2015 as the reference category. Subscript 𝑖 represents a bus stop with its service 

area and 𝑡 is the year. 

Figure 6 (repeated): Histogram with distribution of 
check-ins per capita per year. 

Figure 7: Histogram with distribution of the natural 
logarithm of check-ins per capita per year. 

Figure 8: Histogram with distribution of the average 
distance to a bus stop. 

Figure 9: Histogram with distribution of the natural 
logarithm of the average distance to a bus stop. 
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Four separate models are estimated. The first model will only contain frequency and accessibility 

variables as explanatory variables. This model is used as a benchmark to assess the effect of the 

following model extensions: adding year-fixed effects, adding the socio-demographic controls for age 

and WOZ-value, and finally a model including both year-fixed effects and the socio-demographic 

controls. In the estimated models standard errors are clustered at bus stop level, which allow for 

autocorrelation between subsequent observations over time. Additionally, they are robust to 

heteroskedasticity.  

 

4. Results 

4.1. Regression results 

Four OLS regression models are estimated to explain the variability in check-ins per capita for a bus 

stop’s service area. The estimations of the four models are shown in Table 3. A first observation is that 

all independent variables in the models have a highly significant relationship with check-ins per capita, 

with p-values below 0.001. Regarding goodness of fit, measured by the adjusted R-squared, Model 3 

and Model 4 appear to perform best in explaining variation of the dependent variable with a value of 

approximately 0.25. This is not surprising because Model 3 and 4 have additional control variables 

included. Although the models do not explain a high share of the variation, 0.25 is considered as an 

acceptable value.  

 The benchmark model, Model 1, is solely built up by the frequency variable and variables for 

the distance to the bus stop and distance to a train station from the bus stop’s service area. Both the 

independent variable of interest, average distance to bus stop, and the dependent variable check-ins per 

capita are expressed as the natural logarithm. This allows for the convenient interpretation of elasticity. 

According to Model 1, a 1% increase in the average distance to a bus stop leads to a decrease in check-

ins per capita by 0.52%, ceteris paribus. Model 2 includes year-fixed effects as an addition to Model 1. 

When comparing the estimated coefficients of both models, it can be concluded that including year-

fixed effects has little to no effect on the estimations. This insight also holds true for the frequency and 

distance variables when comparing Model 3 and 4, which differ only in the inclusion of year-fixed 

effects. Yet, year-specific effects are relevant to account for the variation in transit use over time across 

the study area, for example due to the Covid-19 crisis. Therefore it is considered as an important element 

in the model. 

 Model 3 and 4 are estimated including the socio-demographic controls for fraction of 15 to 65 

and average WOZ-value. With regard to the variable of interest average distance to bus stop, the 

estimated parameter has become more negative compared to Model 1 and 2. In the case of Model 4, a 

1% increase in the average distance to a bus stop leads to a decrease in check-ins per capita of 0.77%, 

ceteris paribus. A possible explanation for the change in coefficient is the presence of omitted variable 

bias in the first two models. In these models the coefficient for average distance to bus stop is smaller 
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in magnitude (less negative). This variable may have absorbed a part of the effect of control variables 

that are positively related to the dependent variable check-ins per capita. The average WOZ-value 

complies to this, and could be responsible if it shares a positive correlation with average distance to bus 

stop. This is the case according to Table A1, denoting a low but positive correlation coefficient of 0.1.  

Another possible explanation for the stronger negative effect in Model 3 and 4 could source from a 

negative correlation between the age variable and average distance to bus stop, which is -0.3 as given in 

table A1. 

 Concerning the control variables for average distance to a train station and total frequency, they 

both have a highly significant positive effect on check-ins per capita, ceteris paribus. A higher bus 

frequency and a larger distance to a train station both make the bus relatively more attractive compared 

to other modes. The coefficients for the socio-demographic controls both do not have the expected sign. 

Based on the literature review, income was expected to negatively affect transit ridership. The variable 

average WOZ-value, which is used as a proxy for income, shows a significant positive relationship with 

check-ins per capita. The fraction of 15 to 65 year old was expected to positively affect transit use due 

to the number of students and commuters, but the estimated relationship is negative.  

 Out of the four models, Model 4 with time-fixed effects and socio-demographic controls is 

considered the best model. As mentioned, time-fixed effects are important to control for study area-wide 

variation in transit use over time. The socio-demographic controls for WOZ-value and fraction of 15 to 

65 year are considered as an improvement of the model because of the limited number of variables 

available and the risk of omitted variable bias. Additionally, the estimated coefficients are highly 

significant. Although the variables may not perfectly measure the intended characteristics of the service 

area, which is explained in sections 3.4 and 3.5.6, the above-mentioned reasons to include them are 

considered more important. 
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Table 3: Estimation results 

Dependent variable: logarithm of check-ins per capita. This table presents the estimated parameters 
for each of the four models. Stars indicate the level of significance. Standard errors are reported in 

parenthesis. The adjusted R-squared and number of observations used in the estimations are reported 
at the bottom of the table. All models are estimated using OLS.  

 (1) (2) (3)  (4)  
 Base model Time-FE S-D controls Time-FE & S-D 

     

log(av.distance bus stop) -0.517*** -0.517*** -0.762*** -0.772*** 

 (0.050) (0.050) (0.056) (0.056) 
     

total frequency 0.545*** 0.545*** 0.555*** 0.551*** 

 (0.029) (0.029) (0.030) (0.030) 
     

log(av.distance station) 0.457*** 0.456*** 0.367*** 0.364*** 

 (0.040) (0.040) (0.043) (0.043) 
     

Year-fixed effects No Yes No Yes 

Soc.-dem. controls: No No Yes Yes 

     

      log(WOZ)   0.320*** 0.488*** 

   (0.095) (0.112) 
     

      fraction 15 to 65   -0.912*** -0.878*** 

   (0.246) (0.246) 
     

cons -0.879* -1.004* -0.126 -0.914 

 (0.436) (0.437) (0.702) (0.749) 
N 11799 11799 9860 9860 

Adj. R2 0.186 0.194 0.243 0.255 
Robust (clustered) standard errors in parentheses, * p < 0.05, ** p < 0.01, *** p < 0.001 

4.2. Robustness checks 

In order to estimate the effect of average distance to a bus stop on check-ins per capita, choices have 

been made regarding the appropriate study sample. The robustness of the estimated results to changes 

in the study sample is assessed in this section. On top of that, the effect of including town-fixed effects 

in the regression model is analyzed. Only the coefficient for average distance to a bus stop is examined; 

the variable of interest. The results are reported in Table 4 for all four model specifications. Table A3 

up to A7 in the appendix show the full regression results of the robustness checks.  

 To obtain reliable estimation results given the purpose of this study, a sample has been created 

such that check-in numbers largely represent the start of journeys from travelers’ residential areas. 

Section 3.7 describes under what criteria this sample is selected. For the selection of observations, a 

personal judgement is made regarding the maximum number of bus routes that should service a bus 

stop, in order to limit check-ins from transfers. This maximum number is set at three bus routes. To 

assess the effect of this choice on the results, the same regressions are run using observations with a 

maximum of two routes, as well as a maximum of four routes. The top two rows of Table 4 include the 

estimated coefficients for average distance to bus stop, using these maximum values. When compared 

to the coefficients of the main results in Table 3, minimal differences are observed. Excluding bus stops 
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serviced by three routes appears to strengthen the negative elasticity of check-ins with respect to distance 

by 0.01 to 0.02 percentage-points (for a 1% percent increase in distance). The difference between a 

maximum of four routes at a bus stop and three routes is negligible.  

 A third robustness check is performed by dropping the 5% highest observations for check-ins 

per capita. As described in section 3.7., the taken selection measures failed in removing all observations 

with high values. The 95% percentile has a value of 26.6 check-ins per capita, so all observations with 

values above 26.6 have been removed. Focusing on the most extensive models, Models 3 and 4, the 

negative coefficient for average distance to bus stop has weakened by around 0.01, which is also limited.  

As a fourth robustness check, all observations from the years 2020 up to 2022 have been excluded to 

more precisely assess people’s sensitivity to distance, uninfluenced by coronavirus measures and hybrid 

working trends. This has made the negative relationship of distance on check-ins per capita stronger by 

around 0.02 to 0.03 percentage-points (for a 1% increase in distance). Finally, the inclusion of town-

fixed effects has a relatively large impact on the results. For Model 4, the coefficient changed from  

-0.772 to -0.597, indicating a weakening of the effect of distance. A possible reason is that the fixed 

effects capture relevant factors that were previously hidden in the distance variable. 

 

Table 4: Robustness average distance to bus stop 

This table presents the estimated coefficient for log- average distance to bus stop for each robustness 

check (top to bottom) and for each model specification (left to right). Starts indicate the level of 

significance. Standard errors are reported in parentheses. For each model estimation, the adjusted R-

squared and number of observations (N) is given in italics. 

 (1) (2) (3) (4) 

 Base model Time-FE S-D controls Time-FE & S-D 

2 routes -0.531*** -0.530*** -0.780*** -0.790*** 

(1) (0.051) (0.051) (0.057) (0.058) 

 N = 10904, R2 = 0.178 N = 10904, R2 = 0.185 N= 9020, R2 =0.185 N= 9020, R2 =0.185 

     

4 routes -0.519*** -0.519*** -0.763*** -0.773*** 

(2) (0.049) (0.049) (0.056) (0.056) 

 N = 12202, R2 =0.203 N = 12202, R2 =0.211 N = 10250, R2 =0.261 N = 10250, R2 =0.273 

     

5% highest check-ins out -0.549*** -0.549*** -0.750*** -0.759*** 

(3) (0.046) (0.046) (0.055) (0.055) 

 N =11218, R2 = 0.185 N =11218, R2 = 0.192 N =9569, R2 = 0.222 N =9569, R2 = 0.233 

     

2015-2019 -0.525*** -0.527*** -0.794*** -0.794*** 

(4) (0.056) (0.056) (0.064) (0.064) 

 N =7418, R2 = 0.175 N =7418, R2 = 0.179 N =6130, R2 = 0.230 N =6130, R2 = 0.232 

     

town-fixed effects -0.449*** -0.448*** -0.594*** -0.597*** 

(5) (0.049) (0.049) (0.058) (0.058) 

 N =11795, R2 = 0.471 N =11795, R2 = 0.479 N =9858, R2 = 0.514 N =9858, R2 = 0.523 

Robust (clustered) standard errors in parentheses, * p < 0.05, ** p < 0.01, *** p < 0.001 
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5. Conclusion and discussion 

5.1. Conclusion 

This study aimed at answering the following research question: “To what extent does the distance to the 

nearest bus stop affect bus usage by local residents?”. For this purpose, data has been collected on 

smartcard check-ins at bus stops and population numbers in the Dutch peripheral provinces Drenthe and 

Groningen, over a range of eight years. By the use of GIS-software, service areas for bus stops have 

been defined, and the average distance from each bus stop to its service area has been computed. As 

opposed to the Dutch study from Kerkman et al. (2015), the current study uses a more comprehensive 

measure for accessibility, using larger service areas and taking into account population patterns in these 

areas. The relationship between the average distance and the average number of check-ins per capita has 

been tested using OLS, controlling for service levels and socio-demographic characteristics of the local 

population. The elasticity of check-ins per capita with respect to the distance to a bus stop is found to be 

-0.77, from which it can be concluded that there exists a strong dynamic between distance to the bus 

stop and bus usage. However, this obtained result does not fully answer the exact research question, 

which focuses on bus usage of local residents. Efforts have been taken to select bus stops which are 

expected to be mainly used for journey starts by local residents, but the presence of check-ins by non-

locals cannot be ruled out in many occasions. This issue implies that the calculated values for check-ins 

per capita are likely overestimated, which is a first limitation of this study. In light of the performed 

robustness checks, the estimated elasticity is still assumed to be a fair indication for the common 

variability between check-ins per capita and distance to a bus stop. 

5.2. Interpretation of result 

The estimated negative relationship between check-ins per capita and average distance is not surprising, 

because a larger distance to a bus stop makes other modes of transport more attractive, for instance 

because of convenience or due to shorter travel time. In the current study the main focus is laid on the 

size of the effect. One elasticity value of -0.77 has been obtained, which is an average for the study area. 

The provinces Drenthe and Groningen are covered by urbanized areas as well as rural areas. In the 

context of US urban areas, Ewing & Cervero (2010) computed an elasticity of transit use with respect 

to distance to the nearest stop of -0.29. Although travel behavior and transit availability in the US may 

not be comparable to Dutch standards, it is a sign that potential travelers are relatively less sensitive to 

distance in densely populated areas, which have a higher density of transit stops. For example, a 10%- 

change in distance to a bus stop can be more impactful for residents living on the countryside than for 

residents in a city, because the absolute change is larger. Mulley et al. (2018) have shown that travelers 

in urban areas are prepared to walk further to a bus stop if a higher frequency of service is provided. 

High frequency services are likely to be found in densely populated areas with a high concentration of 

demand. This could be another explanation why the elasticity value of check-ins per capita with respect 

to the distance to a bus stop of -0.77 is likely an overestimation for more urbanized areas. The estimated 
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model in this study did not account for a potential interaction between distance and frequency. However, 

for the analysis a large number of bus stops with a high total frequency have been filtered out, because 

the maximum number of routes at a bus stop was set at three to limit transfer check-ins. The potential 

interaction found by Mulley et al. (2018) may therefore be limited in this study. 

5.3. Limitations 

Apart from the probable overestimation of check-ins per capita, other limitations can be identified in 

this study. One limitation is related to the measurement of the variable of interest, the average distance 

to a bus stop. The distance from residential locations to the closest bus stop is measured “as the crow 

flies”, but in reality people travel over roads. This has led to underestimated values for the average 

distance to a bus stop, especially in areas with a low density of roads. On top of that, it might not be 

exactly the distance to the bus stop that is important for people, but the travel time. The use of actual 

distance or travel time, instead of straight-line distance, is expected to have affected the allocation of 

service areas.  

 Another limitation of this study is the limited number and inaccuracy of control variables, with 

total frequency as a first example. Because of limited historical data for this important driver of demand, 

total frequency at a bus stop for all years is estimated based on the current frequency of the routes that 

see the bus stop. While a bus stop’s service level can vary over years, changes in frequency or headways 

at a bus stop are not accurately represented, which impacts the reliability of the estimated effect of 

frequency on check-ins per capita. Also the use of the socio-demographic control variables can be 

questioned. The variable for age is not accurately measured in many occasions, which sourced from the 

detailed scale of the CBS data at 100-meter raster level. On top of that, this dataset does not include 

variables about income of the population, which resulted in the choice of using WOZ-value as a proxy. 

However, the use of data at 100-meter raster level was necessary to define service area borders and to 

compute average distance to the bus stop as accurately as possible.  

 A final limitation of the study is the restricted external validity of the main result. The estimated 

elasticity of check-ins per capita with respect to the distance to a bus stop is an average for the whole 

study area, which has urban regions as well as rural regions. The result could hold for study areas with 

similar contrasts in population density as in Drenthe and Groningen, and comparable organization and 

quality of public transport. Other peripheral provinces in the Netherlands could be a candidate. However, 

the applicability to urban areas in isolation, or to different countries is considered to be limited.  

5.4. Further research 

Opportunities for further research are proposed that follow from limitations of the current study. In order 

to more accurately analyze the sensitivity of distance for the local population, a method is needed to 

isolate journey starts from the residential area. This is not fully accomplished in this study. A new 

research attempt could be enhanced using data on individual trip level, including the check-in location 

and the timing of the check-in. A smartcard ID in the data would be useful to identify all check-ins on a 
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day for an individual, where the earliest one is likely to be the journey start from the residence. This 

would enable the identification of check-ins from local residents, creating more reliable estimates for 

the relationship between the average distance and check-ins per capita. However, this is merely a 

description of the ideal dataset, and such information can be sensitive due to privacy concerns. 

Alternatively, stated preference techniques can form an outcome, with surveys conducted in the 

surrounding area of a bus stop, by asking participants about their transit usage and measuring the 

distance from their property to the bus stop. However, deviations are possible between actual travel 

behavior and recorded behavior. 

 Regardless of the method, further research attempts could measure travelers’ sensitivity to 

distance to a transit stop solely in non-urban areas. Most existing literature is focused on urban areas. 

Given the signs from literature that the elasticity estimated in the current study is likely an overestimate 

for urban areas, a study focused on non-urban areas only is expected to obtain different results. This 

information would be helpful for the public transport operator to design efficient bus routes, and at the 

same time serving rural populations as well as possible. 
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7. Appendix 
 

Table A1: Pearson correlation coefficients 

This table presents the Pearson correlation coefficient between variable pairs. A star indicates 
statistical significance of the correlation at 5%-level. 

VARIABLES [1] [2] [3] [4] [5] [6] [7] [8] [9] 
check-ins per stop 
[1] 1.000         

service area 
population [2] 0.351* 1.000        

check-ins per capita 
[3] 0.191* -0.060* 1.000       

av. distance to bus 
stop (m) [4] -0.110* -0.030* 0.021* 1.000      

total frequency [5] 0.5192* 0.300* 0.116* -0.136* 1.000     

routes [6] 0.1974* 0.133* 0.073* -0.094* 0.403* 1.000    

av. distance to 
station (m) [7] -0.132* -0.268* -0.007 0.175* -0.251* -0.064* 1.000   

fraction 15 to 65 [8] 0.340* 0.536* -0.063* -0.312* 0.356* 0.156* -0.363* 1.000  

av. WOZ-value  
(x €1000) [9] -0.015 -0.044* 0.053* 0.097* 0.062* -0.023* 0.013 -0.197* 1.000 
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Table A2: Full results main analysis 

Dependent variable: logarithm of check-ins per capita. This table presents the estimated parameters 
for each of the four models from the main analysis. Stars indicate the level of significance. Standard 
errors are reported in parenthesis. The adjusted R-squared and number of observations used in the 

estimations are reported at the bottom of the table. All models are estimated using OLS.  
 (1) (2) (3) (4) 
 Base model Time FE S-D controls Time FE & S-D 

log(av. dist bus) -0.517*** -0.517*** -0.762*** -0.772*** 

 (0.050) (0.050) (0.056) (0.056) 
     

total frequency 0.545*** 0.545*** 0.555*** 0.551*** 

 (0.029) (0.029) (0.030) (0.030) 
     

log(av. dist. station) 0.457*** 0.456*** 0.367*** 0.364*** 

 (0.040) (0.040) (0.043) (0.043) 
     

2015.year  0  0 

  (.)  (.) 
     

2016.year  0.148***  0.00629 

  (0.032)  (0.024) 
     

2017.year  0.257***  0.147*** 

  (0.035)  (0.031) 
     

2018.year  0.289***  0.177*** 

  (0.038)  (0.036) 
     

2019.year  0.328***  0.195*** 

  (0.042)  (0.041) 
     

2020.year  -0.104*  -0.303*** 

  (0.040)  (0.040) 
     

2021.year  -0.0964*  -0.381*** 

  (0.043)  (0.051) 
     

2022.year  0.225***  -0.0531 

  (0.043)  (0.054) 
     

log(WOZ)   0.320*** 0.488*** 

   (0.095) (0.112) 
     

fraction 15-65   -0.912*** -0.878*** 

   (0.246) (0.246) 
     

_cons -0.879* -1.004* -0.126 -0.914 

 (0.436) (0.437) (0.702) (0.749) 
N 11799 11799 9860 9860 

R2 0.186 0.195 0.243 0.256 
Robust (clustered) standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table A3: Full results: 2 routes 

Dependent variable: logarithm of check-ins per capita. This table presents the estimated parameters 
for each of the four models, using bus stops that see two routes at maximum. Stars indicate the level of 

significance. Standard errors are reported in parenthesis. The adjusted R-squared and number of 
observations used in the estimations are reported at the bottom of the table. All models are estimated 

using OLS.  
 (1) (2) (3) (4) 

 Base model Time FE S-D controls Time FE & S-D 

log(av. dist bus) -0.531*** -0.530*** -0.780*** -0.790*** 

 (0.051) (0.051) (0.057) (0.058) 

     

total frequency 0.572*** 0.573*** 0.582*** 0.579*** 

 (0.033) (0.032) (0.034) (0.034) 

     

log(av. dist. station) 0.484*** 0.485*** 0.393*** 0.392*** 

 (0.042) (0.042) (0.046) (0.046) 

     

2015.year  0  0 

  (.)  (.) 

     

2016.year  0.122***  -0.0342 

  (0.035)  (0.027) 

     

2017.year  0.279***  0.159*** 

  (0.038)  (0.035) 

     

2018.year  0.313***  0.200*** 

  (0.041)  (0.039) 

     

2019.year  0.331***  0.196*** 

  (0.045)  (0.044) 

     

2020.year  -0.0713  -0.284*** 

  (0.043)  (0.042) 

     

2021.year  -0.0717  -0.364*** 

  (0.046)  (0.054) 

     

2022.year  0.247***  -0.0379 

  (0.047)  (0.057) 

     

log(WOZ)   0.309** 0.466*** 

   (0.098) (0.115) 

     

Fraction 15-65   -0.881*** -0.855*** 

   (0.257) (0.257) 

     

_cons -1.088* -1.239** -0.266 -1.004 

 (0.452) (0.454) (0.729) (0.776) 

N 10904 10904 9020 9020 

r2_a 0.178 0.185 0.235 0.247 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table A4: Full results: 4 routes 

Dependent variable: logarithm of check-ins per capita. This table presents the estimated parameters 
for each of the four models, using bus stops that see four routes at maximum. Stars indicate the level 
of significance. Standard errors are reported in parenthesis. The adjusted R-squared and number of 
observations used in the estimations are reported at the bottom of the table. All models are estimated 

using OLS.  
 (1) (2) (3) (4) 

 Base model Time FE S-D controls Time FE & S-D 

log(av. dist bus) -0.519*** -0.519*** -0.763*** -0.773*** 

 (0.049) (0.049) (0.056) (0.056) 

     

total frequency 0.531*** 0.531*** 0.543*** 0.539*** 

 (0.027) (0.027) (0.028) (0.028) 

     

log(av. dist. station) 0.445*** 0.444*** 0.357*** 0.354*** 

 (0.039) (0.039) (0.042) (0.042) 

     

2015.year  0  0 

  (.)  (.) 

     

2016.year  0.147***  0.0128 

  (0.030)  (0.022) 

     

2017.year  0.250***  0.139*** 

  (0.034)  (0.030) 

     

2018.year  0.286***  0.176*** 

  (0.037)  (0.034) 

     

2019.year  0.336***  0.201*** 

  (0.041)  (0.040) 

     

2020.year  -0.105**  -0.303*** 

  (0.039)  (0.039) 

     

2021.year  -0.107**  -0.387*** 

  (0.041)  (0.050) 

     

2022.year  0.208***  -0.0660 

  (0.042)  (0.053) 

     

log(WOZ)   0.300** 0.472*** 

   (0.094) (0.110) 

     

Fraction 15-65   -0.913*** -0.878*** 

   (0.243) (0.243) 

     

_cons -0.733 -0.855* 0.101 -0.703 

 (0.429) (0.430) (0.699) (0.745) 

N 12202 12202 10250 10250 

r2_a 0.203 0.211 0.261 0.273 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table A5: Full results: excluding observations with 5% highest check-ins values  
Dependent variable: logarithm of check-ins per capita. This table presents the estimated parameters 
for each of the four models, using only observations up to the 95th percentile of check-ins per capita. 
Stars indicate the level of significance. Standard errors are reported in parenthesis. The adjusted R-
squared and number of observations used in the estimations are reported at the bottom of the table. 

All models are estimated using OLS.  
 (1) (2) (3) (4) 

 Base model Time FE S-D controls Time FE & S-D 

log(av. dist bus) -0.549*** -0.549*** -0.750*** -0.759*** 

 (0.046) (0.046) (0.055) (0.055) 

     

total frequency 0.496*** 0.497*** 0.510*** 0.507*** 

 (0.027) (0.027) (0.030) (0.030) 

     

log(av. dist. station) 0.434*** 0.433*** 0.358*** 0.355*** 

 (0.038) (0.038) (0.042) (0.042) 

     

2015.year  0  0 

  (.)  (.) 

     

2016.year  0.149***  0.00912 

  (0.032)  (0.024) 

     

2017.year  0.243***  0.141*** 

  (0.036)  (0.032) 

     

2018.year  0.272***  0.163*** 

  (0.039)  (0.036) 

     

2019.year  0.311***  0.169*** 

  (0.043)  (0.041) 

     

2020.year  -0.0712  -0.268*** 

  (0.040)  (0.040) 

     

2021.year  -0.0671  -0.350*** 

  (0.043)  (0.051) 

     

2022.year  0.241***  -0.0376 

  (0.043)  (0.053) 

     

log(WOZ)   0.281** 0.434*** 

   (0.092) (0.108) 

     

Fraction 15-65   -0.728** -0.701** 

   (0.239) (0.239) 

     

_cons -0.558 -0.687 0.0196 -0.695 

 (0.412) (0.414) (0.678) (0.723) 

N 11218 11218 9569 9569 

r2_a 0.185 0.192 0.222 0.233 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 



35 

 

 Table A6: Full results: years 2015-2019 

Dependent variable: logarithm of check-ins per capita. This table presents the estimated parameters 
for each of the four models, using only observations from the years 2015-2019. Stars indicate the level 
of significance. Standard errors are reported in parenthesis. The adjusted R-squared and number of 
observations used in the estimations are reported at the bottom of the table. All models are estimated 

using OLS.  
 (1) (2) (3) (4) 

 Base model Time FE S-D controls Time FE & S-D 

log(av. dist bus) -0.525*** -0.527*** -0.794*** -0.794*** 

 (0.056) (0.056) (0.064) (0.064) 

     

total frequency 0.544*** 0.542*** 0.529*** 0.528*** 

 (0.033) (0.033) (0.033) (0.033) 

     

log(av. dist. station) 0.466*** 0.464*** 0.363*** 0.362*** 

 (0.044) (0.044) (0.047) (0.047) 

     

2015.year  0  0 

  (.)  (.) 

     

2016.year  0.149***  0.00690 

  (0.032)  (0.024) 

     

2017.year  0.258***  0.148*** 

  (0.035)  (0.031) 

     

2018.year  0.291***  0.178*** 

  (0.038)  (0.036) 

     

2019.year  0.329***  0.190*** 

  (0.042)  (0.041) 

     

log(WOZ)   0.594*** 0.570*** 

   (0.126) (0.128) 

     

Fraction 15-65   -0.709** -0.718** 

   (0.269) (0.269) 

     

_cons -0.839 -1.002* -1.243 -1.222 

 (0.488) (0.488) (0.838) (0.842) 

N 7418 7418 6130 6130 

r2_a 0.175 0.179 0.230 0.232 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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 Table A7: Full results: including town-fixed effects 

Dependent variable: logarithm of check-ins per capita. This table presents the estimated parameters 
for each of the four models, including town-fixed effects. Stars indicate the level of significance. 

Standard errors are reported in parenthesis. The adjusted R-squared and number of observations used 
in the estimations are reported at the bottom of the table. All models are estimated using OLS.  

 (1) (2) (3) (4) 

 Base model Time FE S-D controls Time FE & S-D 

log(av. dist bus) -0.449*** -0.448*** -0.594*** -0.597*** 

 (0.049) (0.049) (0.058) (0.058) 

     

total frequency 0.496*** 0.497*** 0.499*** 0.502*** 

 (0.041) (0.041) (0.041) (0.041) 

     

log(av. dist. station) 0.342*** 0.341*** 0.274** 0.270** 

 (0.097) (0.097) (0.099) (0.100) 

     

2015.year  0  0 

  (.)  (.) 

     

2016.year  0.113***  0.00156 

  (0.029)  (0.023) 

     

2017.year  0.236***  0.145*** 

  (0.033)  (0.029) 

     

2018.year  0.238***  0.179*** 

  (0.035)  (0.032) 

     

2019.year  0.296***  0.231*** 

  (0.038)  (0.037) 

     

2020.year  -0.132***  -0.232*** 

  (0.037)  (0.038) 

     

2021.year  -0.162***  -0.230*** 

  (0.039)  (0.058) 

     

2022.year  0.174***  0.110 

  (0.041)  (0.061) 

     

log(WOZ)   -0.266* -0.115 

   (0.110) (0.151) 

     

Fraction 15-65   -1.040*** -0.985*** 

   (0.246) (0.248) 

     

_cons -0.223 -0.314 2.920** 2.124 

 (0.868) (0.870) (1.032) (1.115) 

N 11795 11795 9858 9858 

r2_a 0.471 0.479 0.514 0.523 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 
 


